

Linear Quadratic Control from an Optimization Viewpoint

Yujie Tang

Yang Zheng · Yingying Li · Runyu Zhang · Na Li

Harvard John A. Paulson School of Engineering and Applied Sciences

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Learn the feedback controller with unknown/incomplete/complex system model

System

Autonomous driving

Manufacturing

Swarm robotics

Sensor networks

Learn the feedback controller with unknown/incomplete/complex system model

Opportunities:

- Abundant, real-time data
- Computational power

Challenges:

- Information restriction/incomplete measurement
- Rigorous performance guarantees
- Scalability
- •

Manufacturing

Sensor networks

Learn the feedback controller with unknown/incomplete/complex system model

Observed data:

- Measurement y(t)
- Stage cost c(x(t),u(t))

Feedback controller/control policy:

• A mapping from historical measurements $(y(t),y(t-1),\dots)$ to the control input u(t)

Goal: Find the best control policy that minimizes the accumulated cost

- discounted cost $\mathbb{E}[\sum_{t=0}^{\infty} \gamma^t c(x(t), u(t))]$
- infinite-horizon average cost

$$\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}[c(x(t), u(t))]$$

Learn the feedback controller with unknown/incomplete/complex system model

How to refine the control strategy based on observed data?

- Model-free policy search
 - No model inference, use observed data more directly,
 - Policy gradient theorem/Q-learning
 - Zeroth-order optimization
- Model-based methods
 - Observed data → model inference → controller synthesis

Learn the feedback controller with unknown/incomplete/complex system model

Theoretical & Practically Relevant Concerns

- Sample complexity # of measurement samples $\{y(t)\}$ needed to find an (approximately) optimal policy
- Convergence rate

How fast the optimality gap decreases as we iteratively refine the control strategy

Stability

Whether the closed-loop system remains stable during the learning process

Reinforcement Learning of Linear Quadratic Regulators

Linear Quadratic Regulator (LQR)

- Control strategy: u(t) = K x(t)
- Accumulated cost:

$$J(K) = \sum_{t=0}^{\infty} \mathbb{E} \big[\underbrace{x(t)^{\top} Q \, x(t) + u(t)^{\top} R \, u(t)}_{\text{Stage cost}} \big]$$

An optimization viewpoint:

$$\min_{K} J(K)$$
s.t. K stabilizes the system

Reinforcement Learning of Linear Quadratic Regulators

Linear Quadratic Regulator (LQR)

- Control strategy: u(t) = K x(t)
- Accumulated cost:

$$J(K) = \sum_{t=0}^{\infty} \mathbb{E} \big[\underbrace{x(t)^{\top} Q \, x(t) + u(t)^{\top} R \, u(t)}_{\text{Stage cost}} \big]$$

An optimization viewpoint:

$$K(s+1) = K(s) - \alpha \cdot \widehat{\nabla J(K(s))}$$

Zeroth-order gradient estimation

- ✓ Fast global convergence (exponential)
- ✓ Low sample complexity
- ✓ Guaranteed stability w.h.p.

[Fazel et al. 2018] [Malik et al. 2019] [Mohammadi et al. 2019]

Extension to Other Linear Quadratic Control Problems

- Mixed $\mathcal{H}_2/\mathcal{H}_{\infty}$ design [Zhang et al. 2019], risk-constrained LQR [Zhao & You, 2021]
- This talk: Linear quadratic control with partial/incomplete measurement

Extension to Other Linear Quadratic Control Problems

Part I

Distributed Reinforcement Learning for Decentralized LQ Control

Swarm robotics, autonomous vehicles, mobile sensor networks

Part II

Optimization Landscape Analysis of Linear Quadratic Gaussian (LQG)

How does partial/imperfect measurement affect the problem structure?

Decentralized Linear Quadratic Control

Gaussian white

- Control strategy: $u_i(t) = K_i y_i(t)$
- Stage cost: $c_i(t) = x(t)^T Q_i x(t) + u(t)^T Q_i u(t)$

(Global) accumulated cost

minimize
$$\frac{1}{N} \sum_{i=1}^{N} \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}[c_i(t)]$$

Local communication

Agents are connected by a bidirectional communication network $\mathcal{G} = (\{1, \dots, N\}, \mathcal{E})$

Decentralized Linear Quadratic Control

Gaussian white

- Control strategy: $u_i(t) = K_i y_i(t)$
- Stage cost: $c_i(t) = x(t)^T Q_i x(t) + u(t)^T Q_i u(t)$

(Global) accumulated cost

minimize
$$\frac{1}{N} \sum_{i=1}^{N} \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}[c_i(t)]$$

- Local communication $\mathcal{G} = (\{1, \dots, N\}, \mathcal{E})$
- Distributed reinforcement learning
 - Variable Unknown system matrices A, B, C_i
 - Coordination via local communication rather than a central server

Decentralized Linear Quadratic Control

Gaussian white

- Control strategy: $u_i(t) = K_i y_i(t)$
- Stage cost: $c_i(t) = x(t)^T Q_i x(t) + u(t)^T Q_i u(t)$

An optimization viewpoint:

$$\min_{K=(K_1,...,K_N)} J(K)$$
s.t. K stabilizes the system

$$J(K) = \frac{1}{N} \sum_{i=1}^{N} \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}[c_i(t)]$$

Algorithm Design

- 1. Generate random perturbation $z_i(s)$
- 2. Apply control policy $K_i(s) + rz_i(s)$ to the system

- 1. Generate random perturbation $z_i(s)$
- 2. Apply control policy $K_i(s) + rz_i(s)$ to the system
- 3. Accumulate costs $c_i(t)$ & exchange info with neighbors

- 1. Generate random perturbation $z_i(s)$
- 2. Apply control policy $K_i(s) + rz_i(s)$ to the system
- 3. Accumulate costs $c_i(t)$ & exchange info with neighbors
- 4. Obtain an estimated **global** obj. $\hat{J}_i(s) \approx J(K(s) + rz(s))$

- 1. Generate random perturbation $z_i(s)$
- 2. Apply control policy $K_i(s) + rz_i(s)$ to the system
- 3. Accumulate costs $c_i(t)$ & exchange info with neighbors
- 4. Obtain an estimated global obj. $\hat{J}_i(s) \approx J(K(s) + rz(s))$
- 5. Construct zeroth-order partial gradient estimator

$$\hat{G}_i(s) = \frac{d}{r} \, \hat{J}_i(s) \, z_i(s)$$

- 1. Generate random perturbation $z_i(s)$
- 2. Apply control policy $K_i(s) + rz_i(s)$ to the system
- 3. Accumulate costs $c_i(t)$ & exchange info with neighbors
- 4. Obtain an estimated global obj. $\hat{J}_i(s) \approx J(K(s) + rz(s))$
- 5. Construct zeroth-order partial gradient estimator

$$\hat{G}_i(s) = \frac{d}{r} \, \hat{J}_i(s) \, z_i(s)$$

6. Update by stochastic gradient descent $K_i(s+1) = K_i(s) - \eta \hat{G}_i(s)$

- 1. Generate random perturbation $z_i(s)$
- 2. Apply control policy $K_i(s) + rz_i(s)$ to the system
- 3. Accumulate costs $c_i(t)$ & exchange info with neighbors
- 4. Obtain an estimated global obj. $\hat{J}_i(s) \approx J(K(s) + rz(s))$
- 5. Construct zeroth-order partial gradient estimator

$$\hat{G}_i(s) = \frac{d}{r}\,\hat{J}_i(s)\,z_i(s)$$

6. Update by stochastic gradient descent $K_i(s+1) = K_i(s) - \eta \hat{G}_i(s)$

- 1. Generate random perturbation $z_i(s)$
- 2. Apply control policy $K_i(s) + rz_i(s)$ to the system
- 3. Accumulate costs $c_i(t)$ & exchange info with neighbors
- 4. Obtain an estimated global obj. $\hat{J}_i(s) \approx J(K(s) + rz(s))$
- 5. Construct zeroth-order partial gradient estimator

$$\hat{G}_i(s) = \frac{d}{r} \, \hat{J}_i(s) \, z_i(s)$$

Zeroth-order gradient estimation

$$G(K; r, z) = \frac{d}{r}J(K + rz)z$$

- d: dimension of K
- r: smoothing radius
- z: random perturbation

$$\mathbb{E}_z[\mathsf{G}(K;r,z)] = \nabla J(K) + O(r)$$

[Flaxman et al. 2005] [Nesterov & Spokoiny 2017]

6. Update by stochastic gradient descent $K_i(s+1) = K_i(s) - \eta \hat{G}_i(s)$

- 1. Generate random perturbation $z_i(s)$
- 2. Apply control policy $K_i(s) + rz_i(s)$ to the system
- 3. Accumulate costs $c_i(t)$ & exchange info with neighbors
- 4. Obtain an estimated global obj. $\hat{J}_i(s) \approx J(K(s) + rz(s))$
- 5. Construct zeroth-order partial gradient estimator

$$\hat{G}_i(s) = \frac{d}{r} \, \hat{J}_i(s) \, z_i(s)$$

6. Update by stochastic gradient descent $K_i(s+1) = K_i(s)$

Consensus method

$$\mu_i(t) = \frac{t-1}{t} \sum_j W_{ij} \,\mu_i(t-1) + \frac{1}{t} c_i(t)$$

- W: communication weight matrix
 - $N \times N$ doubly stochastic
 - $W_{ij} = 0$ if (i, j) not connected

$$\mathbb{E}\left|\mu_i(T_J) - \left|\frac{1}{NT_J}\sum_{i=1}^N \sum_{\tau=t}^{T_J} c_i(t)\right|\right| = O\left(\frac{1}{T_J}\right)$$

Finite-horizon approximation of J

Theoretical Analysis

- Inspired by existing works on centralized LQR [Malik et al. 2019] [Bu et al. 2020]
- Major technical contributions in our extension to the decentralized setting:
 - Handling unbounded Gaussian process noise
 - > Treating infinite-horizon average cost, rather than discounted cost
 - \blacktriangleright Bounding error caused by finite-horizon approximation in generating $z_i(s)$ and producing the estimate $\hat{J}_i(s) \approx J(K(s) + rz(s))$
 - Explicit bound for the sampling complexity

Performance Guarantees

Theorem (informal)

Let $\epsilon > 0$ be arbitrary. By choosing the parameters of the algorithm to satisfy

$$r \sim O(\sqrt{\epsilon})$$
 $\eta \sim O(\epsilon r^2)$ $T_J \sim \Omega\left(\frac{1}{r\sqrt{\epsilon}}\right)$ $T_G \sim \Theta\left(\frac{1}{\eta\epsilon}\right)$

we can achieve the following with high probability:

- The closed-loop system remain **stable** during the learning procedure
- Optimality guarantee given by

$$\frac{1}{T_G} \sum_{s=1}^{T_G} \|\nabla J(K(s))\|^2 \le \epsilon$$

A relatively weak

 $\left(\frac{1}{T_G}\sum_{s=1}^{T_G}\|\nabla J(K(s))\|^2 \leq \epsilon\right) \quad \text{optimality guarantee} \\ \textbf{Why?}$ Corollary: Sample complexity bound given by $T_GT_J \sim \Theta\left(\frac{1}{\epsilon^4}\right)$

Comparison with Centralized LQR

	Centralized LQR	Decentralized LQ control
Stability	Υ	Υ
Optimality	$J(K(T_G)) - J(K^*) \le \epsilon$	$\frac{1}{T_G} \sum_{s=1}^{T_G} \ \nabla J(K(s))\ ^2 \le \epsilon$
Domain	Nonconvex, connected	Multiple connected components
		[Feng & Lavaei 2019]

Comparison with Centralized LQR

	Centralized LQR	Decentralized LQ control
Stability	Υ	Υ
Optimality	$J(K(T_G)) - J(K^*) \le \epsilon$	$\frac{1}{T_G} \sum_{s=1}^{T_G} \ \nabla J(K(s))\ ^2 \le \epsilon$
Domain	Nonconvex, connected	Multiple connected components
J(K)	 Coercive Gradient dominance Unique stationary point 	 Coercive Not gradient dominance Multiple stationary points Lacks good properties

Comparison with Centralized LQR

	Centralized LQR	Single-agent, partial measurement, $u(t) = Ky(t)$
Stability	Υ	Υ
Optimality	$J(K(T_G)) - J(K^*) \le \epsilon$	$\frac{1}{T_G} \sum_{s=1}^{T_G} \ \nabla J(K(s))\ ^2 \le \epsilon$
Domain	Nonconvex, connected	Multiple connected components
J(K)	 Coercive Gradient dominance Unique stationary point 	 Coercive Not gradient dominance Multiple stationary points Lacks good properties

Extension to Other Linear Quadratic Control Problems

Part I

Distributed Reinforcement Learning for Decentralized LQ Control

Swarm robotics, autonomous vehicles, mobile sensor networks

Part II

Optimization Landscape Analysis of Linear Quadratic Gaussian (LQG)

How does partial/imperfect measurement affect the problem structure?

Optimization Landscape of LQG

Linear Quadratic Gaussian (LQG)

Gaussian white

- Control strategy: $K \in \mathcal{K}$
- Accumulated cost:

$$J(\mathsf{K}) = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E} \left[\underline{x(t)^{\top} Q \, x(t) + u(t)^{\top} R \, u(t)} \right]$$
 Stage cost

An optimization viewpoint:

$$\min_{\mathsf{K}\in\mathcal{K}}\ J(\mathsf{K})$$
 s.t. K stabilizes the system

Optimization Landscape Analysis

- Properties of the domain (set of stabilizing controllers)
 - convexity, connectivity, open/closed
- Properties of the accumulated cost J
 - convexity, differentiability, coercivity
 - set of stationary points/local minima/global minima

Existing Work: Optimization Landscape of LQR

Possibly nonconvex, connected,

Coercive, gradient dominance, unique stationary point

✓ Fast convergence to global optimum for gradient-based methods

Our Focus: Optimization Landscape of LQG

- Extension from LQR to LQG is highly nontrivial
 - LQG control theory is more sophisticated
 - Some results of LQR may not hold for LQG anymore
 - The domain consists of **dynamic controllers**, leading to more complex landscape structure

Dynamic Controllers

Gaussian white

Dynamic Controllers

Gaussian white

dynamic controller

$$\mathsf{K} = (A_\mathsf{K}, B_\mathsf{K}, C_\mathsf{K})$$

 $\xi(t)$ internal state of the controller

 $\dim \xi(t)$ order of the controller

 $\dim \xi(t) = \dim x(t)$ full-order

 $\dim \xi(t) < \dim x(t)$ reduced-order

Theorem. The optimal control policy for LQG is a full-order dynamic controller.

Dynamic Controllers

Gaussian white

dynamic controller

$$K = (A_K, B_K, C_K)$$

 $\xi(t)$ internal state of the controller

 $\dim \xi(t)$ order of the controller

$$\dim \xi(t) = \dim x(t)$$
 full-order

$$\dim \xi(t) < \dim x(t)$$
 reduced-order

minimal controller

The input-output behavior cannot be replicated by a lower order controller.

* $(A_{\mathsf{K}}, B_{\mathsf{K}}, C_{\mathsf{K}})$ controllable and observable

Objective Function and Domain

Gaussian white

dynamic controller

$$K = (A_K, B_K, C_K)$$

• Objective function $J(\mathsf{K}):\mathcal{C}_{\mathrm{full}} o \mathbb{R}$

Set of full-order, stabilizing dynamic controllers

- When does K stabilize the system?
 - Dynamics of the closed-loop system:

$$\frac{d}{dt} \begin{bmatrix} x \\ \xi \end{bmatrix} = \begin{bmatrix} A & BC_{\mathsf{K}} \\ B_{\mathsf{K}}C & A_{\mathsf{K}} \end{bmatrix} \begin{bmatrix} x \\ \xi \end{bmatrix} + \begin{bmatrix} I & 0 \\ 0 & B_{\mathsf{K}} \end{bmatrix} \begin{bmatrix} w \\ v \end{bmatrix}$$
$$\begin{bmatrix} y \\ u \end{bmatrix} = \begin{bmatrix} C & 0 \\ 0 & C_{\mathsf{K}} \end{bmatrix} \begin{bmatrix} x \\ \xi \end{bmatrix} + \begin{bmatrix} v \\ 0 \end{bmatrix}$$

Objective Function and Domain

Gaussian white

dynamic controller

$$K = (A_K, B_K, C_K)$$

• Objective function $J(\mathsf{K}):\mathcal{C}_{\mathrm{full}} o \mathbb{R}$

When does K stabilize the system?

$$C_{\text{full}} = \left\{ \mathsf{K} \,\middle|\, \mathsf{K} = (A_{\mathsf{K}}, B_{\mathsf{K}}, C_{\mathsf{K}}) \text{ is full-order,} \right.$$

$$\left[\begin{matrix} A & BC_{\mathsf{K}} \\ B_{\mathsf{K}}C & A_{\mathsf{K}} \end{matrix} \right] \text{ is Hurwitz stable} \right\}$$

Objective Function and Domain

Gaussian white

dynamic controller

$$K = (A_K, B_K, C_K)$$

$$\min_{\mathsf{K}} J(\mathsf{K})$$
s.t. $\mathsf{K} = (A_{\mathsf{K}}, B_{\mathsf{K}}, C_{\mathsf{K}}) \in \mathcal{C}_{\text{full}}$

Objective: J(K) The accumulated cost

$$\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E} \left[x(t)^{\mathsf{T}} Q x(t) + u(t)^{\mathsf{T}} R u(t) \right]$$

Domain: C_{full} The set of full-order, stabilizing dynamic controllers

Preliminary Results on the Domain

Proposition. The domain C_{full} is open, unbounded, and can be nonconvex.

Theorem 1. Under some standard assumptions,

1) The set $\mathcal{C}_{\mathrm{full}}$ can be disconnected, but has at most 2 connected components.

Theorem 1. Under some standard assumptions,

- 1) The set $\mathcal{C}_{\mathrm{full}}$ can be disconnected, but has at most 2 connected components.
- 2) If $\mathcal{C}_{\text{full}}$ has 2 connected components, then the mapping

$$(A_{\mathsf{K}}, B_{\mathsf{K}}, C_{\mathsf{K}}) \mapsto (A_{\mathsf{K}}, -B_{\mathsf{K}}, -C_{\mathsf{K}})$$

is a bijection between the 2 connected components that does not change the value of J(K).

$$J(\mathsf{K}) = J(T(\mathsf{K}))$$

For gradient-based local search methods, it makes no difference to search over either connected component.

Theorem 2. Under some standard assumptions,

- 1) $C_{\rm full}$ is connected if the plant is open-loop stable or there exists a reduced-order stabilizing controller.
- 2) The sufficient condition of connectivity in 1) becomes necessary if the plant is single-input or single-output.

Example 1.
$$\dot{x}(t) = -x(t) + u(t) + w(t)$$
 $x(t) \in \mathbb{R}$ $y(t) = x(t) + v(t)$

open-loop stable

Theorem 2. Under some standard assumptions,

- 1) $\mathcal{C}_{\mathrm{full}}$ is connected if the plant is open-loop stable or there exists a reduced-order stabilizing controller.
- 2) The sufficient condition of connectivity in 1) becomes necessary if the plant is single-input or single-output.

Example 2.
$$\dot{x}(t) = x(t) + u(t) + w(t)$$
 $x(t) \in \mathbb{R}$ $y(t) = x(t) + v(t)$

- not open-loop stable
- no reduced-order stabilizing controller
- single-input single-output

Theorem 2. Under some standard assumptions,

- 1) $C_{\rm full}$ is connected if the plant is open-loop stable or there exists a reduced-order stabilizing controller.
- 2) The sufficient condition of connectivity in 1) becomes necessary if the plant is single-input or single-output.

Example 2.
$$\dot{x}(t) = x(t) + u(t) + w(t)$$
 $x(t) \in \mathbb{R}$ $y(t) = x(t) + v(t)$

The two connected components:

$$C_1^+ = \{ (A_{\mathsf{K}}, B_{\mathsf{K}}, C_{\mathsf{K}}) \in \mathbb{R}^3 | A_{\mathsf{K}} < -1, B_{\mathsf{K}} C_{\mathsf{K}} < A_{\mathsf{K}}, B_{\mathsf{K}} > 0 \}$$

$$C_1^- = \{ (A_{\mathsf{K}}, B_{\mathsf{K}}, C_{\mathsf{K}}) \in \mathbb{R}^3 | A_{\mathsf{K}} < -1, B_{\mathsf{K}} C_{\mathsf{K}} < A_{\mathsf{K}}, B_{\mathsf{K}} < 0 \}$$

Connectivity of the Domain - Proof Idea

Proof idea: Construct a convex set \mathcal{F} and a continuous mapping Φ such that

How to construct \mathcal{F} and Φ ?

Inspired by convex reformulation of LQG in control theory [Scherer et al. 1997]

$$\mathcal{F} = \left\{ (X, Y, M, H, F) | X, Y \in \mathbb{S}^n, M \in \mathbb{R}^{n \times n}, H \in \mathbb{R}^{n \times p}, F \in \mathbb{R}^{m \times n}, \\ \begin{bmatrix} X & I \\ I & Y \end{bmatrix} \succ 0, \begin{bmatrix} AX + BF & A \\ M & YA + HC \end{bmatrix} + \begin{bmatrix} AX + BF & A \\ M & YA + HC \end{bmatrix}^\top \prec 0 \right\}$$
$$\begin{bmatrix} 0 & \Phi_C(\mathsf{Z}) \\ \Phi_B(\mathsf{Z}) & \Phi_A(\mathsf{Z}) \end{bmatrix} = \begin{bmatrix} I & 0 \\ YB & \Xi \end{bmatrix}^{-1} \begin{bmatrix} 0 & H \\ F & M - YAX \end{bmatrix} \begin{bmatrix} I & CX \\ 0 & \Xi^{-1}(I - YX) \end{bmatrix}$$

LQG as an Optimization Problem

$$\min_{\mathsf{K}} J(\mathsf{K})$$
s.t. $\mathsf{K} = (A_{\mathsf{K}}, B_{\mathsf{K}}, C_{\mathsf{K}}) \in \mathcal{C}_{\text{full}}$

- Connectivity of the domain $\mathcal{C}_{\mathrm{full}}$
 - Is it connected? Not necessarily.
 - If not, how many connected components can it have? Two.
- Structure of stationary points of J(K)
 - Are there spurious (strictly suboptimal) stationary points?
 - How to check if a stationary point is globally optimal?

LQG as an Optimization Problem

$$\min_{\mathsf{K}} J(\mathsf{K})$$
s.t. $\mathsf{K} = (A_{\mathsf{K}}, B_{\mathsf{K}}, C_{\mathsf{K}}) \in \mathcal{C}_{\text{full}}$

- Connectivity of the domain $\mathcal{C}_{\mathrm{full}}$
 - Is it connected? Not necessarily.
 - If not, how many connected components can it have? Two.
- Structure of stationary points of J(K)
 - Are there spurious (strictly suboptimal) stationary points?
 - How to check if a stationary point is globally optimal?

Proposition.

- 1) J(K) is a real analytic function over its domain
- 2) J(K) has **non-unique** and **non-isolated** global optima

Similarity transformation

$$(A_{K}, B_{K}, C_{K}) \mapsto (TA_{K}T^{-1}, TB_{K}, C_{K}T^{-1})$$

$$\dot{\xi}(t) = A_{K} \xi(t) + B_{K} y(t)$$
$$u(t) = C_{K} \xi(t)$$

 $\rightarrow J(K)$ is invariant under similarity transformations.

Proposition.

- 1) J(K) is a real analytic function over its domain
- 2) J(K) has **non-unique** and **non-isolated** global optima
- 3) J(K) will have **spurious** stationary points if the system is open-loop stable
 - There may even exist saddle points with a vanishing Hessian.

Proposition.

- 1) J(K) is a real analytic function over its domain
- 2) J(K) has **non-unique** and **non-isolated** global optima
- 3) J(K) will have **spurious** stationary points if the system is open-loop stable
- 4) J(K) is not coercive

Theorem 3. Suppose there exists a stationary point that is a **minimal** controller. Then

- 1) This stationary point is a global optimum of J(K)
- 2) The set of all global optima forms a manifold with 2 connected components.

Implication.

Consider gradient descent iterations

$$\mathsf{K}_{t+1} = \mathsf{K}_t - \alpha \nabla J(\mathsf{K}_t)$$

If the iterates converge to a minimal controller, then this minimal controller is a global optimum.

Check its controllability and observability.

^{*} How to check if a controller is minimal?

Summary

LQG as an optimization problem

Partial & noisy system measurement

$$\min_{\mathsf{K}} J(\mathsf{K})$$
s.t. $\mathsf{K} = (A_{\mathsf{K}}, B_{\mathsf{K}}, C_{\mathsf{K}}) \in \mathcal{C}_{\text{full}}$

Connectivity of domain

- At most two connected components
- The two connected components mirror each other
- Conditions for being connected

Stationary points

- Non-unique global optima, spurious stationary points
- Minimal stationary points are globally optimal

More results are presented in arXiv:2102.04393.

Summary

Centralized LQR

Single-agent, partial measurement, u(t) = K y(t)

Single-agent, partial & noisy measurement, dynamic controller

Nonconvex, connected

Multiple connected components

Nonconvex, at most 2 connected components

Coercive

Domain

 $J(\mathsf{K})$

- Gradient dominance
- Unique stationary point

- Coercive
- Not gradient dominance
- Multiple stationary points
- Lacks good properties

- Not coercive
- Spurious stationary points, non-strict saddle points
- Sufficient condition for checking global optimality

Future Directions

- A comprehensive classification of stationary points
- Conditions for existence of minimal globally optimal controllers
- Saddle points with vanishing Hessians may exist. How to deal with them?
- Alternative model-free parametrization of dynamic controllers
 - Better optimization landscape structures, smaller dimension

Future Directions

- A comprehensive classification of stationary points
- Conditions for existence of minimal globally optimal controllers
- Saddle points with vanishing Hessians may exist. How to deal with them?
- Alternative model-free parametrization of dynamic controllers
 - Better optimization landscape structures, smaller dimension
- Extension to multi-agent settings?
 - Should agents also exchange their measurements $y_i(t)$?
 - Effects of delays?

Our papers: arXiv:1912.09135, arXiv:2102.04393

References

- [Fazel et al. 2018] M. Fazel, R. Ge, S. Kakade, and M. Mesbahi. Global convergence of policy gradient methods for the linear quadratic regulator. In *Proceedings of the 35th International Conference on Machine Learning*, pages 1467–1476, 2018.
- [Malik et al. 2019] D. Malik, A. Pananjady, K. Bhatia, K. Khamaru, P. Bartlett, and M. Wainwright. Derivative-free methods for policy optimization: Guarantees for linear quadratic systems. In the 22nd International Conference on Artificial Intelligence and Statistics, pages 2916–2925, 2019.
- [Mohammadi et al. 2019] H. Mohammadi, A. Zare, M. Soltanolkotabi, and M. R. Jovanović. Convergence and sample complexity of gradient methods for the model-free linear quadratic regulator problem. arXiv:1912.11899, 2019.
 - [Zhang et al. 2019] K. Zhang, B. Hu, and T. Basar. Policy optimization for H_2 linear control with H_{∞} robustness guarantee: Implicit regularization and global convergence. arXiv:1910.09496, 2019.
 - [Zhao & You, 2021] F. Zhao, and K. You. Primal-dual learning for the model-free risk-constrained linear quadratic regulator. In *Proceedings* of the 3rd Conference on Learning for Dynamics and Control, pages 702–714, 2021.
 - [Flaxman et al. 2005] A. D. Flaxman, A. T. Kalai, and H. B. McMahan. Online convex optimization in the bandit setting: gradient descent without a gradient. In Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages 385–394, 2005.
- [Nesterov & Spokoiny 2017] Y. Nesterov and V. Spokoiny. Random gradient-free minimization of convex functions. *Foundations of Computational Mathematics*, vol. 17, no. 2, pages 527–566, 2017.
 - [Feng & Lavaei 2019] H. Feng and J. Lavaei. On the exponential number of connected components for the feasible set of optimal decentralized control problems. In 2019 American Control Conference, pages 1430–1437, 2019
 - [Bu et al. 2019] J. Bu, A. Mesbahi, M. Fazel, and M. Mesbahi. LQR through the lens of first order methods: Discretetime case. arXiv:1907.08921, 2019.
 - [Scherer et al. 1997] C. Scherer, P. Gahinet, and M. Chilali. Multiobjective output-feedback control via LMI optimization. IEEE Transactions on Automatic Control, vol. 42, no. 7, pages 896–911, 1997.