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Reinforcement Learning of Feedback Control Systems

= Learn the feedback controller with unknown/incomplete/complex system model
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input controller
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Reinforcement Learning of Feedback Control Systems

= Learn the feedback controller with unknown/incomplete/complex system model
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Opportunities:

 Abundant, real-time data
- Computational power

Challenges:
* |nformation restriction/incomplete
measurement

« Rigorous performance guarantees
« Scalability



Reinforcement Learning of Feedback Control Systems

= Learn the feedback controller with unknown/incomplete/complex system model

w(t) Observed data:
—_— System
L 1) = £ (), u(t), i) + Measurement y(t)
u(t) = Bz (), w(t)) - Stage cost c(x(t),u(t))
Feedback controller/control policy:
Control Feedback <I\/Ieasuremen’c * A mapping from historical measurements
input controller (y(t),y(t-1),...) to the control input wu(t)

Goal: Find the best control policy that minimizes
Apply a control Accumulate the accumulated cost
strategy observed data

« discounted cost E[> .7 v c(z(t), u(t))]

: * infinite-horizon average cost
Refine the
control strategy lim 7 S Ele(x(t), u(t))]
—00




Reinforcement Learning of Feedback Control Systems

= Learn the feedback controller with unknown/incomplete/complex system model

* Policy gradient theorem/Q-learning

_w(®) | System . How to refine the control stra;tegy
t
u(t) o(t+1) = f(a(t). u(t). w(D)) Y based on observed data:
t) = h(z(t), w(t re T T T !
y(t) = hiz(t) w(t) I = Model-free policy search :
|
| No model inference, use observed data more |
Control Feedback <I\/Ieasuremen’c : directly, :
input controller I |
| |
| |
I |

- Zeroth-order optimization
Apply a control Accumulate | S a
strategy observed data = Model-based methods

Observed data -2 model inference = controller

Refine the synthesis
control strategy




Reinforcement Learning of Feedback Control Systems

= Learn the feedback controller with unknown/incomplete/complex system model

w(t) Theoretical & Practically Relevant
—_— System (0
t
A a4 = Fa),u(t). w(D) Concerns
y(t) = h(z(t), w(t)) = Sample complexity
# of measurement samples {y(¢)} needed
Control Feedback <|\/|easuremen‘|: to find an (approximately) Optlma| p0|lcy
input controller
= Convergence rate

How fast the optimality gap decreases as

Apply a control Accumulate we iteratively refine the control strategy
strategy observed data

= Stability

Refine the Whether the closed-loop system remains
control strategy stable during the learning process




Reinforcement Learning of Linear Quadratic Regulators

Linear Quadratic Regulator (LQR)

Perfect state  An optimization viewpoint:
Linear system measurement

O a(er1) = Asy+Buy 22 min J(K)

y(t) = z(t) 2(0) ~ D *

s.t. K stabilizes the system

Control Feedback <Measurement

input controller

= Control strategy: u(t) = K x(t)
= Accumulated cost:

Z]E ) Qx(t) (t)TRu(@}

-
Stage cost




Reinforcement Learning of Linear Quadratic Regulators

Linear Quadratic Regulator (LQR)

Perfect state
Linear system measurement
u(t) y(t)
> z(t+1) = Ax(t)+ Bu(t)
y(t) — Jj(t) :C(O) ~7D
Control Feedback <Measurement
input controller
Control strategy: u(t) = K x(t)
Accumulated cost:
Z]E O Qz(t)+u(t)" Ru(t)]
4

~

Stage cost

An optimization viewpoint:

K(s4+1) = K(s) — a - VJI(K(3))

Zeroth-order
gradient estimation

v" Fast global convergence (exponential)
v Low sample complexity
v" Guaranteed stability w.h.p.

[Fazel et al. 2018] [Malik et al. 2019] [Mohammadi et al. 2019]



Extension to Other Linear Quadratic Control Problems

= Mixed H2/H design [Zhang et al. 2019], risk-constrained LQR [Zhao & You, 2021]

= This talk: Linear quadratic control with partial/incomplete measurement



Extension to Other Linear Quadratic Control Problems

Part | Part Il

Distributed Reinforcement Learning
for Decentralized LQ Control

Optimization Landscape Analysis of
Linear Quadratic Gaussian (LQG)

u(t) . w(t), v(t) .
> Linear system —_— Linear system t)
t Y
u(t) > &(t) = Ax(t)+ Bu(t)+w(t)
— -[; f—

aO T pgemrr e y(t) = Ca(t) +v(t)
u;(t) . yi(t)

- Agent i . Control Dynamic | Measurement

( t input controller

un () Agent N <—yN( ) P

How does partial/imperfect measurement

» Swarm robotics, autonomous vehicles,
affect the problem structure?

mobile sensor networks

10



Decentralized Linear Quadratic Control

Gaussian white

* (Global) accumulated cost

w(t) —>

—_—

Linear system

2(t+1) = Az(t)+Bu(t)+w(t)

N
L 1
minimize — lim —ZE ci(t

T—o00 T’
z—l

*-— Agent 1

¢

y1(t)=Crz(t)

 Local communication

< Agent i

g

Agents are connected by a bidirectional
communication network G = ({1,..., N}, &)

Y; (t) = C@$(t)

<— Agent N

¢

yn (1) =Cnx(t)

= Control strategy: wu;(t)

= K; yi(t)

= Stage cost: ¢;(t) = z(t)" Qi z(t) + u(t)" Q; u(t)
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Decentralized Linear Quadratic Control

Gaussian white
* (Global) accumulated cost

w(t) — .
Linear system N

w(t+1) = Az(t)+ Bu(t)+w(t) minimize - )  lim — ZE ci(t

—_—

z—l

* Local communication ¢ =({1,...,N},§)

: ¢ y1(t)=Chz(t
§<—u1() Agent 1 <1() o)

* Distributed reinforcement learning

u(t) | ‘ w; (1) ot <yi(t):0igp(t) » Unknown system matrices A4, B, C;
gent » Coordination via local communication
sl rather than a central server
i i un () yn (1) =Cnx(t)

: he———— Agent N |=
Apply a control Accumulate
strategy observed data

= Control strategy: u;(t) = K; y;(t)

' Refine the
= Stage cost: ¢;(t) = x(t)' Q; z(t) + u(t)" Q; u(t) control strategy

12



Decentralized Linear Quadratic Control

Gaussian white

w(t) —>

—_—

Linear system

2(t+1) = Az(t)+Bu(t)+w(t)

An optimization viewpoint:

*-— Agent 1

¢

y1(t)=Crz(t)

min J(K)
K=(K1,...,Kx)

s.t. K stabilizes the system

= Control strategy: wu;(t)
= Stage cost: ¢;(t) = z(t)' Q; x(t) +

R 1 —
J(K)=— lim — Y El¢(t)]
| e =t AP P>
P e Agent: |«
un (t) Agent N _yn () =Cna(t)
P Apply a control Accumulate
strategy observed data
= K, yi(1)

Refine the
u(t) Q; u(t) control strategy
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Algorithm Design

fast timescale

slow timescale

14



Algorithm

1. Generate random perturbation z;(s)

2. Apply control policy K;(s) + rz;(s) to the system

15



Algorithm

s=1 s=2 §=3
I\IIIIIIIIIIIIIIIIIIIIIIIIII>
/)
Y
The closed-loop system evolve for T'; steps

1. Generate random perturbation z;(s)
2. Apply control policy K;(s) + rz;(s) to the system

3. Accumulate costs ¢;(t) & exchange info with neighbors

16



Algorithm

1. Generate random perturbation z;(s)
2. Apply control policy K;(s) + rz;(s) to the system
3. Accumulate costs ¢;(t) & exchange info with neighbors

4. Obtain an estimated global obj. J;(s) ~ J(K(s)+rz(s))

17



ol = Y S

Algorithm

. Generate random perturbation z;(s)

Apply control policy K;(s) + rz;(s) to the system
Accumulate costs ¢;(t) & exchange info with neighbors
Obtain an estimated global obj. J;(s) ~ J(K (s)+rz(s))

Construct zeroth-order partial gradient estimator

Gi(s) = L J(s) 2(s)

/'a

18



Algorithm

1. Generate random perturbation z;(s)
Apply control policy K;(s) + rz;(s) to the system
Accumulate costs ¢;(t) & exchange info with neighbors

Obtain an estimated global obj. J;(s) ~ J(K (s)+rz(s))

ol = Y S

Construct zeroth-order partial gradient estimator
. d -
Gi(s) = . Ji(s) zi(s)

6. Update by stochastic gradient descent K;(s+1) = K;(s) — nGi(s)
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Algorithm

1. Generate random perturbation z;(s)
Apply control policy K;(s) + rz;(s) to the system
Accumulate costs ¢;(t) & exchange info with neighbors

Obtain an estimated global obj. J;(s) ~ J(K (s)+rz(s))

ol = Y S

Construct zeroth-order partial gradient estimator
. d -
Gi(s) = . Ji(s) zi(s)

6. Update by stochastic gradient descent K;(s+1) = K;(s) — nG;(s)
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I

Algorithm

. Generate random perturbation z;(s)

Apply control policy K;(s) + rz;(s) to the system
Accumulate costs c¢;(t) & exchange info with neighb«

Obtain an estimated global obj. J;(s) ~ J(K (s)+rz(:

Construct|zeroth-order partial gradient estimator

Gi(s) = L J(s) 2(s)

/'a

Update by stochastic gradient descent K;(s+1) = K;(s,

Zeroth-order gradient estimation

G(K;r z) = gJ(K—H“z)z

d: dimension of K
r: smoothing radius
z: random perturbation

E.|G(K;r 2)] =VJ(K)+ O(r)

[Flaxman et al. 2005] [Nesterov & Spokoiny 2017]
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Algorithm

Consensus method

1. Generate random perturbation z;(s t—1 1
() palt) = —— > Wi pi(t—1) + Zci(?)
J

2. Apply control policy K;(s) + rz;(s) to the system
3. |Accumulate costs ¢;(t) & exchange info with neighbors W communication weight matrix
R * NXN doubly stochastic
4.|Obtain an estimated global obj. J;(s) ~ J(K(s)+rz(s)) . Wi, = 0 if (i,7) not connected
5. Construct zeroth-order partial gradient estimator N T, )
: d . E (™) - 33 )] =0 (i)
Gi(s) = — J;(s) zi(s) i NTj — — il i Ty
T \ )
6. Update by stochastic gradient descent K;(s+1) = K;(: Finite-horizon approximation of J

22



Theoretical Analysis

* Inspired by existing works on centralized LQR [Malik et al. 2019] [Bu et al. 2020]
* Major technical contributions in our extension to the decentralized setting:
» Handling unbounded Gaussian process noise
» Treating infinite-horizon average cost, rather than discounted cost

> Bounding error caused by finite-horizon approximation in generating zi(s)
and producing the estimate J;(s) ~ J(K(s) + rz(s))

» Explicit bound for the sampling complexity

23



Performance Guarantees

Theorem (informal)

Let ¢ > 0 be arbitrary. By choosing the parameters of the algorithm to satisfy

r~0(/e)  n~O(er?) TJ”“(%) TGN@(%)

we can achieve the following with high probability:

* The closed-loop system remain stable during the learning procedure

« Optimality guarantee given by A relatively weak

-----------------------------------------------

. " optimality guarantee
| Ta ==t - Why?

64

_______________________________________________ .
Corollary: Sample complexity bound given by 1Tg1; ~ @( )

24



Comparison with Centralized LQR

Centralized LQR

Decentralized LQ control

Stability Y Y
Optimality J(K(Tg)) = J(K*) < e 7= DS IVI(K (s)]I? < e
Domain Nonconvex, connected Multiple connected components

[Feng & Lavaei 2019]

25



Comparison with Centralized LQR

Centralized LQR Decentralized LQ control
Stability Y Y
Optimality J(K(Tg)) = J(K*) < e 7= DS IVI(K (s)]I? < e
Domain Nonconvex, connected Multiple connected components
« Coercive « Coercive
J(K) « Gradient dominance * Not gradient dominance
« Unique stationary point « Multiple stationary points

\/A/ « Lacks good properties

[Fazel et al. 2018] [Malik et al. 2019] [Mohammadi et al. 2019] [Bu et al. 2019] [Feng & Lavaei 2019]
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Comparison with Centralized LQR

Centralized LQR Single-agent, partial measurement,
u(t) = Ky(t)
Stability Y Y
Optimality J(K(Tg)) = J(K*) < e 7= DS IVI(K (s)]I? < e
Domain Nonconvex, connected Multiple connected components
« Coercive « Coercive
J(K) « Gradient dominance * Not gradient dominance
« Unique stationary point « Multiple stationary points

\/A/ « Lacks good properties

[Fazel et al. 2018] [Malik et al. 2019] [Mohammadi et al. 2019] [Bu et al. 2019] [Feng & Lavaei 2019]

27



Extension to Other Linear Quadratic Control Problems

Part Il

Optimization Landscape Analysis of
Linear Quadratic Gaussian (LQG)

> i(t)
y(t)

Linear system

Az(t)+Bu(t)+w(t)

Cz(t) + v(t)

y(t)

Control

input

Dynamic
controller

<I\/Ieasurement

How does partial/imperfect measurement
affect the problem structure?

28



Optimization Landscape of LQG

Linear Quadratic Gaussian (LQG) An optimization viewpoint:
Gaussian white
w(t),v(t) _ min J(K)
—_— Linear system KeK
u(t) () = Aw(t)+Bu(t)+w(t) y(t) s.t. K stabilizes the system
y(t) = Cx(t) + v(t)

Optimization Landscape Analysis

Control Feedback Measurement , . —_
: eeebac - = Properties of the domain (set of stabilizing
input controller
controllers)
= Control strategy: K € K « convexity, connectivity, open/closed
=  Accumulated cost' = Properties of the accumulated cost J
« convexity, differentiability, coercivit
J(K) = lim — Z]E BT Qz(t) + u(®) Ru(?)] g 4 4
T—oo T - _ « set of stationary points/local minima/global

Stage cost minima

29



Existing Work: Optimization Landscape of LQR

/
4 A
. /
~~~~~~~~ ,/
./’ ~~~~~~~ >
Possibly nonconvex, Coercive, gradient dominance,
connected, unique stationary point

v Fast convergence to
global optimum for
gradient-based methods

[Fazel et al. 2018] [Malik et al. 2019] [Mohammadi et al. 2019] [Bu et al. 2019]

30



Our Focus: Optimization Landscape of LQG

= Extension from LQR to LQG is highly nontrivial
* LQG control theory is more sophisticated
« Some results of LQR may not hold for LQG anymore

« The domain consists of dynamic controllers, leading to more complex
landscape structure

31



Dynamic Controllers

Gaussian white

w(t),v(t) .
—_— Linear system

o) #(t) = Az(t)+Bu(t)+w(t) Y

Cz(t) + v(t)

y(t)

Feedback controller —

32



Dynamic Controllers

Gaussian white

w(t),v(t) : £(t) internal state of the controller
—_— Linear system
u(t) . y(t)
> &(t) = Azx(t)+ Bu(t)+w(t)
y(t) = Ca(t) + v(t) dim &(¢) order of the controller
dim &(t) = dimxz(¢) full-order
E) = ARE() + Bry(®) dim&(t) < dimx(t) reduced-order
u(t) = CK€<t)

Theorem. The optimal control policy for

dynamic controller LQG is a full-order dynamic controller.

K= (AK7 BK7 CK)

33



Dynamic Controllers

Gaussian white

w(t),v(t) Linear systom £(t) internal state of the controller
YO ot ) = An(t)+Bu(t)+w(t) i
y(t) = Cx(t) + v(t) dim &(¢) order of the controller
dim&(t) = dimx(t) full-order
E) = ARE() + Bry(®) dim&(t) < dimx(t) reduced-order
u(t) = CK€<t)
dynamic controller minimal controller

K = (Ak, Bk, Ck) The input-output behavior cannot be

replicated by a lower order controller.

* (Ak, Bk, Ck) controllable and observable

34



Objective Function and Domain

Gaussian white

w(t),v(t)
u(t)

Linear system

> () = Az(t)+Bu(t)+w(t)
y(t) = Cz(t) + v(t)

Set of full-order,
stabilizing dynamic

controllers

/

dynamic controller
K= (AK7 BK7 CK)

i__ ______
dt | § |

S K

| 1t
PN
Q
s
PN

lscc il |

« Obijective function J(K) : Cqy — R

When does K stabilize the system?

o Dynamics of the closed-loop system:

I 0
0 Bk

|

w
(%

35
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Objective Function and Domain

Gaussian white

@ghed)] Linear system - « Obijective function J(K) : Cquu — R
t Y
u(t) > &(t) = Azx(t)+ Bu(t)+w(t) Set of full-order, /
y(t) = Ca(t) + () stabilizing dynamic
controllers
£(t) = Aké(t) + Bry(t) - When does K stabilize the system?
u(t) = CK€<t)
. e | (A, Bk, full-
dynamic controller Catl = { <> Bi; Ck) 1s full-order,

K = (A, Bk, Ck) [ A BCk

BC Ay ] is Hurwitz stable}

36



Objective Function and Domain

Gaussian white

w(t),v(t)

Linear system .
u J (K
O o it) = Ant)+ Bu(t) +w(t) — win - J(K)
yit) = i) +olb) s.t. K=(Ak, Bk, Ck) € Cran
£(t) = Ax€(t) + Bry(t) Objective: J(K) The accumulated cost
u(t) = CK€<t)
Jim Z Elz(t) Qz(t) + u(t)" Ru(t)]

dynamic controller

K = (Ak, Bk, Ck) Domain: Cra1 The set of full-order, stabilizing
dynamic controllers

37



Preliminary Results on the Domalin

Proposition. The domain Csy1 is open, unbounded, and can be nonconvex.

38



Connectivity of the Domain

Theorem 1. Under some standard assumptions,

1) The set Csui1 can be disconnected, but has at most 2 connected components.

39



Connectivity of the Domain

Theorem 1. Under some standard assumptions,

1) The set Cqu1 can be disconnected, but has at most 2 connected components.
2) If Crau has 2 connected components, then the mapping

(AK7 BK7 CK) = (AK7 _BKa _CK>

is a bijection between the 2 connected components that does not change the
value of J(K).

For gradient-based local search methods,
it makes no difference to search over
either connected component.

40



Connectivity of the Domain

Theorem 2. Under some standard assumptions,

1) Crun is connected if the plant is open-loop stable or there exists a reduced-
order stabilizing controller.

2) The sufficient condition of connectivity in 1) becomes necessary if the plant is
single-input or single-output.

Example 1. @(t) = —z(t) +u(t) +w(t) =(t) €R

« open-loop stable

41



Connectivity of the Domain

Theorem 2. Under some standard assumptions,

1) Crun is connected if the plant is open-loop stable or there exists a reduced-
order stabilizing controller.

2) The sufficient condition of connectivity in 1) becomes necessary if the plant is
single-input or single-output.

[
G
_|_
I~
&
_|_
s
&
8
&
M
=

Example 2. (1)

 not open-loop stable
* no reduced-order stabilizing controller
« single-input single-output

42



Connectivity of the Domain

Theorem 2. Under some standard assumptions,

1) Crun is connected if the plant is open-loop stable or there exists a reduced-
order stabilizing controller.

2) The sufficient condition of connectivity in 1) becomes necessary if the plant is
single-input or single-output.

Example 2. #(t) = z(t) +u(t) +w(t) =(t) €R
y(t) = z(t) + v(t)

The two connected components:
C; = {(Ak, Bk, Ck) € R3|Ax < —1, BkCk < Ak, Bk > 0}
Cl_ = {(AK,BK,CK) c R?”AK < —1,BKCK < AK,BK < 0}

43



Connectivity of the Domain - Proof Idea

Proof idea: Construct a convex set F and a continuous mapping ¢ such that

2 connected components at most 2 connected components
e e e - mmmmmmmmn
va X GL — | Cran
e C LR L e CRE e surjective e

./0

general linear group
2 connected components

connected
How to construct / and ©? Fo= {(X, Y,M,H,F)|X,Y € S",M € R"™*", H € R"*P, F ¢ R™*",

Inspired by convex reformulation

of LQG in control theory
[Scherer et al. 1997] [ . <I>C(Z)]
®

X 1], [AX+BF A . [AX+BF A T<o
I Y | M YA+ HC M  YA+HC

44



LQG as an Optimization Problem

min J(K)

s.t. K=(Ak, Bk, Ck) € Crun

= Connectivity of the domain Cg,
* Is it connected? Not necessarily.

* If not, how many connected components can it have? Two.

= Structure of stationary points of J(K)
* Are there spurious (strictly suboptimal) stationary points?

« How to check if a stationary point is globally optimal?

45



LQG as an Optimization Problem

min J(K)

s.t. K=(Ak, Bk, Ck) € Crun

= Connectivity of the domain
* |s it connected? Not necessarily.

* |If not, how many connected components can it have? Two.

= Structure of stationary points of J(K)
Are there spurious (strictly suboptimal) stationary points?

How to check if a stationary point is globally optimal?

46



Structure of Stationary Points

Proposition.

1)  J(K) is a real analytic function over its domain

2) J(K) has non-unique and non-isolated global optima

Similarity transformation "

(AK7 BK7 CK) = (TAKT_17 TBK) CKT_l)

§(t) = Ax&(t) + Bk y(t)
u(t) = Ck §(t)

o — () w i

» J(K) is invariant under similarity transformations.

47



Structure of Stationary Points

Proposition.

1)  J(K) is a real analytic function over its domain
2) J(K) has non-unique and non-isolated global optima
3) J(K) will have spurious stationary points if the system is open-loop stable

» There may even exist saddle points A T (K4 2A)
with a vanishing Hessian. 0.8336f

0.8335}

0.8334}

0.8333} \-

»

~0.04  -0.02 0.2~ 004 ¢

48



Structure of Stationary Points

Proposition.

1)  J(K) is a real analytic function over its domain

) J(K) has non-unique and non-isolated global optima

3) J(K) will have spurious stationary points if the system is open-loop stable
) J(K)

J(K) is not coercive

49



Structure of Stationary Points

Theorem 3. Suppose there exists a stationary point that is a minimal controller. Then

1) This stationary point is a global optimum of J(K)
2) The set of all global optima forms a manifold with 2 connected components.

- Example 1 Example 2

In

;)Kc
o = N W

50



Structure of Stationary Points

Implication.

Consider gradient descent iterations
Kt_|_1 = Kt — OKVJ(Kt)

If the iterates converge to a minimal
controller, then this minimal controller is a
global optimum.

IV (K

10°

* How to check if a controller is minimal?
» Check its controllability and observability.

1072 |
1041

1076

Iterations ¢

0 500 1000 1500 2000 2500
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LQG as an optimization problem min J(K)
Partial & noisy system measurement s.t. K=(Ak, Bk, Ck) € Ctun
Connectivity of domain Stationary points
“» At most two connected components “* Non-unique global optima,

% The two connected components SRS SEnehrElY [POIME

mirror each other < Minimal stationary points are

<+ Conditions for being connected globally optimal

More results are presented in arXiv:2102.04393.

52



Summary

Centralized LQR Single-agent, partial measurement, Single-agent, partla.ll & noisy
u(t) = Ky(t) measurement, dynamic controller

Nonconvex, connected Multiple connected components Nonconvex,

, at most 2 connected components

Domain . 4 i
’ | [Feng & Lavaei 2019]
« Coercive
« Gradient dominance . Coercive * Not coercive
« Unique stationary point * Not gradient dominance * Spurious stationary points,
J(K) _ _ , non-strict saddle points
A « Multiple stationary points

» Sufficient condition for

» Lacks good properties checking global optimality

53



Future Directions

A comprehensive classification of stationary points
« Conditions for existence of minimal globally optimal controllers
« Saddle points with vanishing Hessians may exist. How to deal with them?

« Alternative model-free parametrization of dynamic controllers

« Better optimization landscape structures, smaller dimension

104 T T T T 102

10?

IV (K

100}

0 1000 2000 3000 4000 5000 0 2000 4000 6000 8000 1000C
Iterations ¢ Iterations ¢
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Future Directions

A comprehensive classification of stationary points
« Conditions for existence of minimal globally optimal controllers
« Saddle points with vanishing Hessians may exist. How to deal with them?
« Alternative model-free parametrization of dynamic controllers
« Better optimization landscape structures, smaller dimension
« Extension to multi-agent settings?

« Should agents also exchange their measurements y;(¢) ?

« Effects of delays?

55



Our papers: arXiv:1912.09135, arXiv:2102.04393
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