
Fundamentals of Distributed Optimization

Lecture Notes

Yujie Tang

June 23, 2023

WORKING DRAFT:

Please email yujietang@pku.edu.cn if you find any errors or typos

or have any comments. Your feedback would be greatly appreciated!

Contents

1 Preliminaries 3

1.1 Some Analysis and Linear Algebra . 3

1.2 Convex Sets and Functions . 6

1.3 Gradient Descent and Its Convergence Analysis 15

1.4 Stochastic Gradient Descent . 20

1.5 Other Variants of Gradient Descent . 24

1.6 Basic Graph Theory . 28

1.7 Basic Setups of Distributed Optimization . 31

1.A Proof of Theorem 1.6 . 32

2 Consensus Optimization: Basics 35

2.1 Formulation and Applications . 35

2.2 Consensus Method for Distributed Averaging . 39

2.3 How to Construct the Weight Matrix . 43

2.4 Extension to Directed Networks . 48

2.5 Our First Distributed Optimization Algorithm 51

2.A Accelerated Consensus for Distributed Averaging 54

2.B Proof of Theorem 2.4 . 56

3 Decentralized Gradient Descent 60

3.1 The Algorithm . 60

3.2 Useful Observations and Tools for Convergence Analysis 61

3.3 Convergence Analysis: The Convex and Smooth Case 67

3.4 Another Perspective of DGD with Constant Step Sizes 70

3.5 A Brief Discussion on the Complexity and Scalability 75

3.6 Some Extensions . 76

1

4 Gradient Tracking for Distributed Optimization 80

4.1 Motivation and the Algorithm . 80

4.2 Convergence Analysis: The Smooth and Strongly Convex Case 83

4.3 Convergence Analysis: The Smooth and Convex Case 88

4.4 Other Gradient-Tracking-Type Distributed Optimization Algorithms 93

5 Alternating Direction Method of Multipliers 102

5.1 Introduction to ADMM . 102

5.2 Decentralized ADMM for Consensus Optimization 108

5.A Proof of Convergence of ADMM . 112

6 Distributed Averaging and Optimization over Time-Varying Networks 115

6.1 Time-Varying Communication Networks . 115

6.2 The Push-Sum Method for Distributed Averaging 118

6.3 Relaxing the Strong Connectivity Condition . 121

6.4 Distributed Optimization over Time-Varying Communication Networks 124

6.A Proof of Theorem 6.1 . 127

7 Federated Learning from a Distributed Optimization Viewpoint 132

7.1 Problem Setup . 132

7.2 The Federated Averaging Algorithm . 134

7.3 Convergence of Federated Averaging . 136

2

Chapter 1

Preliminaries

1.1 Some Analysis and Linear Algebra

Notations. In this course, we exclusively consider finite-dimensional optimization problems

defined over standard (real) Euclidean spaces. The standard inner product will be denoted by

⟨x, y⟩ := xTy for x, y ∈ Rn, and the induced norm (the ℓ2 norm) will be denoted by ∥x∥ :=√
⟨x, x⟩. The vector in Rn will all entries equal to 1 will be denoted by 1.

Basic Notions and Facts in Analysis

• A sequence (xn)n∈N in Rn is said to converge to x ∈ Rn, if for any ϵ > 0, there exists N ∈ N
such that ∥xn − x∥ < ϵ whenever n > N .

Equivalently, we say that xn converges to x if and only if limn→∞ ∥xn − x∥ = 0.

• A set O ⊆ Rn is said to be open, if for any x ∈ O, there exists ϵ > 0 such that {y ∈ Rn :

∥y − x∥ < ϵ} ⊆ O, i.e., O contains a ball of radius ϵ centered around x.

It can be shown that the union of an arbitrary family of open sets is open.

• The interior of a set S ⊆ Rn, denoted by intS, is the union of all open sets that are subsets

of S. Equivalently, x ∈ intS if and only if there exists ϵ > 0 such that {y ∈ Rn : ∥y − x∥ <
ϵ} ⊆ S.

• A set C ⊆ Rn is said to be closed if for any sequence (xn)n∈N in C, whenever xn converges

to some x ∈ Rn, we have x ∈ C.

It can be shown that a set C ⊆ Rn is closed if and only if its complement Rn\C is open.

It can be shown that the intersection of an arbitrary family of closed sets is closed.

• The closure of a set S ⊆ Rn, denoted by clS, is the intersection of all closed subsets of

Rn that contain S as a subset. Equivalently, x ∈ clS if and only if there exists a sequence

(xn)n∈N in S such that xn → x.

3

• The boundary of a set S ⊆ Rn, denoted by ∂S, is defined by ∂S := clS\ intS. Equivalently,
x ∈ ∂S if and only if for any ϵ > 0, the set {y ∈ Rn : ∥y − x∥ < ϵ} intersects with both S

and Rn\S.

• A sequence (xn)n∈N is said to be Cauchy, if for any ϵ > 0, there exists N ∈ N such that

∥xm − xn∥ < ϵ whenever m > N and n > N .

Any closed subset C ⊆ Rn is complete in the sense that any Cauchy sequence (xn) in C

converges to some x ∈ C.

• An open cover of a set S ⊆ Rn is a family of open sets {Oα ⊆ Rn : α ∈ I} such that

S ⊆
⋃

α∈I Oα. Note that the index set I can be arbitrary (e.g., uncountable).

A set C ⊆ Rn is said to be compact, if for any open cover {Oα : α ∈ I} of S, there exists a

finite subset J ⊆ I such that S ⊆
⋃

α∈J Oα.

If a set C ⊆ Rn is compact, then for any sequence (xn)n∈N in C, there exists a subsequence

(xnk
)k∈N that converges to some x ∈ C.

By the Heine-Borel theorem, a set C ⊆ Rn is compact if and only if C is closed and there

exists R > 0 such that C ⊆ {x ∈ Rn : ∥x∥ ≤ R}.

• Let f : S → R where S ⊆ Rn. Given x ∈ S, f is said to be continuous at x if for any ϵ > 0,

there exists δ > 0 such that |f(y)− f(x)| < ϵ whenever y ∈ S and ∥y − x∥ < δ. f is said to

be a continuous function (or continuous over S, or simply continuous), if f is continuous at

every point in S.

By the extreme value theorem, if C ⊆ Rn is a compact set and f : C → R is a continuous

function, then f attains its maximum value and minimum value on C.

We refer to [Rudin, 1976] for more details and proofs of these results.

Basic Notions and Facts in Linear Algebra

• For a real matrix A, we define its spectral norm by

∥A∥2 := max
∥x∥=1

∥Ax∥.

It can be shown that ∥A∥2 is equal to the largest singular value of A, or equivalently, ∥A∥22
is equal to the largest eigenvalue of ATA (and AAT). By definition, we have

∥Ax∥ ≤ ∥A∥2 · ∥x∥

for all x.

• The Frobenius norm of A is defined by

∥A∥F :=
√
tr(ATA) =

√∑
i,j
|Aij |2.

• Now suppose A is a square matrix, its spectral radius, denoted by ρ(A), is defined as the

maximum magnitude of its eigenvalues. Note that ρ(A) is in general not a norm.

We have the following facts about the spectral radius of A ∈ Rn×n:

4

1. limk→∞ Ak = 0 if and only if ρ(A) < 1.

2. ρ(A) ≤
∥∥Ak

∥∥1/k
2

for all k ≥ 1.

3. (Gelfand’s formula) ρ(A) = limk→∞
∥∥Ak

∥∥1/k
2

.

Exercise 1.1. Let A ∈ Rm×n and B ∈ Rn×p. Show that

∥AB∥F ≤ ∥A∥2 · ∥B∥F .

(Hint: Write B =
[
b1 b2 · · · bn

]
with bi being the column vectors of B, and note that

AB =
[
Ab1 Ab2 · · · Abn

]
,

by the rules of block matrix multiplication.)

• The Spectral Theorem: Let A ∈ Rn×n, and let λ1, . . . , λp be the distinct eigenvalues of A.

Then

Cn = null(A− λ1I)
n ⊕ · · · ⊕ null(A− λpI)

n,

where each null(A − λiI)
n should be understood as a subspace of the complex Euclidean

space Cn, i.e., the space of all complex vectors v ∈ Cn such that (A− λiI)
nv = 0.

• Jordan canonical form: For λ ∈ C and positive integer n, we introduce the notation

J1(λ) = [λ], J2(λ) =

[
λ 1

0 λ

]
, Jn(λ) =

λ 1 0 · · · 0

0 λ 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · λ 1

0 0 · · · 0 λ

 ∈ Cn×n.

Let A ∈ Rn×n be arbitrary. Then there exists an invertible matrix S ∈ Cn×n and a matrix

J ∈ Cn×n such that

1. S−1AS = J .

2. The matrix J is a block-diagonal matrix of the form

J =

Jn1

(λ1)

Jn2(λ2)
. . .

Jnp(λp)

for some λ1, . . . , λp ∈ C and positive integers n1, . . . , np with n1 + · · ·+ np = n.

The matrix J is called the Jordan canonical form of A.

• An eigenvalue of A ∈ Rn×n is called simple, if dimnull(A− λI)n = 1. It can be shown that

the following statements are equivalent:

5

1. λ is a simple eigenvalue of A.

2. λ appears exact once in the diagonal of the Jordan canonical form of A.

3. null(A − λI) = span{v} for some v ∈ Cn\{0}, and there exists no vector u such that

Au = λu+ v.

• We say that A ∈ Rn×n is real symmetric if A = AT. It is a standard result in linear algebra

that for a real symmetric matrix A, there exists U ∈ Rn×n satisfying UTU = I such that

A = UΛUT,

which can also be equivalently written as

A =

n∑
i=1

λiuiu
T
i .

Here Λ = diag(λ1, . . . , λn) and ui is the i’th column vector of U . It can be seen that each ui

is an eigenvector of A with eigenvalue λi satisfying ∥ui∥ = 1.

• We say that a real symmetric matrix A is positive semidefinite if xTAx ≥ 0 for all x. It is

called positive definite if xTAx > 0 as long as x ̸= 0. A real symmetric matrix A is positive

semidefinite (resp. positive definite) if and only if all eigenvalues of A are nonnegative (resp.

positive). For real symmetric matrices A,B, we denote A ⪰ B or B ⪯ A if A−B is positive

semidefinite, and denote A ≻ B and B ≺ A if A−B is positive definite.

We refer to [Lax, 2007] and [Horn and Johnson, 2013] for more details and proofs of these

results.

1.2 Convex Sets and Functions

Definition 1.1. A set C ⊆ Rn is called convex, if for any x, y ∈ C and any α ∈ [0, 1], we have

αx+ (1−α)y ∈ C. Geometrically, this means that any line segments connecting two points x, y

in a convex set C will always be contained in the set C.

Theorem 1.1 (Projection onto closed convex sets). Let C ⊆ Rn be a closed convex set. Then

for any x ∈ Rn, there exists a unique z∗ ∈ C such that ∥x− z∗∥ ≤ ∥x− z∥ for any z ∈ C.

The point z∗ will be called the projection of x onto C, and will be denoted by PC [x].

Proof. We first show the existence of z∗. Fix x ∈ Rn, and denote δ := inf{∥z − x∥ : z ∈ C}. It
is evident that δ ≥ 0. Now let (zk)k≥1 be a sequence of points in C such that

∥zk − x∥2 ≤ δ2 +
1

k

for any k. We first show that (zk) is a Cauchy sequence. Let k, l > 0 be arbitrary, and notice

that, since C is convex, we have 1
2 (zk + zl) ∈ C, which implies∥∥∥∥12(zk + zl)− x

∥∥∥∥2 ≥ δ2.

6

Expanding this inequality leads to

1

2
⟨zk − x, zl − x⟩ ≥ δ2 − 1

4
∥zk − x∥2 − 1

4
∥zl − x∥2. (1.1)

We now calculate ∥zk − zl∥2 and get

∥zk − zl∥2 = ∥zk − x∥2 + ∥zl − x∥2 − 2⟨zk − x, zl − x⟩

≤ 2(∥zk − x∥2 + ∥zl − x∥2)− 4δ2 ≤ 2

k
+

2

l
.

where we used the inequality (1.1) in the second step. Thus for any ϵ > 0, as long as k, l ≥ ⌈4/ϵ2⌉,
we have ∥zk − zl∥ ≤ ϵ, showing that (zk) is a Cauchy sequence. By the completeness of Rd,

z∗ = limz→∞ zk exists. Since C is closed, we have z∗ ∈ C, and by the continuity of the norm

function, we have

∥z∗ − x∥ = lim
k→∞

∥zk − x∥ = δ,

which is less than or equal to ∥z − x∥ for any z ∈ C, by the definition of δ.

Next, we show the uniqueness of z∗. Suppose both u∗(1) and z∗(2) satisfies
∥∥z∗(1) − x

∥∥ =∥∥z∗(2) − x
∥∥ = δ. Denote z̃ = 1

2 (z
∗(1) + z∗(2)), and we have

δ2 ≤ ∥z̃ − x∥2 =

∥∥∥∥12(z∗(1) − x) +
1

2
(z∗(2) − x)

∥∥∥∥2 =
1

2
δ2 +

1

2
⟨z∗(1) − x, z∗(2) − x⟩,

which leads to

⟨z∗(1) − x, z∗(2) − x⟩ ≥ δ2.

Consequently,∥∥z∗(1) − z∗(2)
∥∥2 = ∥z∗(1) − x∥2 + ∥z∗(2) − x∥2 − 2⟨z∗(1) − x, z∗(2) − x⟩ ≤ δ2 + δ2 − 2δ2 = 0,

implying that z∗(1) = z∗(2). The proof is now complete.

Exercise 1.2. Let C ⊆ Rn be a closed convex set. Prove that

1. For any x ∈ Rn and y ∈ C, we have y = PC [x] if and only if ⟨z − y, x− y⟩ ≤ 0 for any

z ∈ C.

2. (Nonexpansiveness) ∥PC [x]− PC [y]∥ ≤ ∥x− y∥ for any x, y ∈ Rn.

(Hint: Expand ∥x− y∥2 = ∥(x− PC [x] + PC [y]− y) + (PC [x]− PC [y])∥2 and use the

previous result.)

Theorem 1.2 (Supporting Hyperplane Theorem). Let C ⊆ Rn be a convex set, and let x be a

boundary point of C. Then there exists a nonzero v ∈ Rn such that

⟨v, z − x⟩ ≥ 0

for all z ∈ C.

7

Proof. Since a boundary point of C is also a boundary point of clC, without loss of generality,

we may assume that C is closed.

Since x is a boundary point of C, for each k ≥ 1, we can find xk ∈ Rn\C such that ∥xk−x∥ ≤
1/k. By the second part of Exercise 1.2, we have

⟨z − PC [xk], xk − PC [xk]⟩ ≤ 0 (1.2)

for any z ∈ C and any k ≥ 1 by the convexity of C. Now define

vk =
PC [xk]− xk

∥PC [xk]− xk∥
.

Obviously ∥vk∥ = 1, and by the compactness of the unit sphere in Rn, there exists a subsequence

(vkm
)m≥1 such that vkm

→ v as m→∞. On the other hand, by (1.2), for any z ∈ C,

⟨z − PC [xkm
], vkm

⟩ ≥ 0.

By taking the limitm→∞ and noting that ∥PC [xkm
]−x∥ = ∥PC [xkm

]−PC [x]∥ ≤ ∥xkm
−x∥ → 0,

we obtain

⟨z − x, v⟩ ≥ 0

for all z ∈ C, which completes the proof.

Let f : S → R where S ⊆ Rn. The epigraph of f on a set X ⊆ S is defined as

epi(f ;X) := {(x, y) ∈ X × R : f(x) ≤ y}.

Definition 1.2. A function f : S → R is said to be convex on a set X ⊆ S if the epigraph

epi(f ;X) is a convex set. Equivalently, f is convex on X if and only if X is convex, and for any

x, y ∈ X and α ∈ [0, 1], we have

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).

When f is convex on its domain S, we simply say that f is convex.

Lemma 1.1 (Jensen’s inequality). Let f : X → R be convex. Then for any x1, . . . , xm ∈ X
and any nonnegative α1, . . . , αm satisfying

∑
i αi = 1, we have

f

(
m∑
i=1

αixi

)
≤

m∑
i=1

αif(xi).

Definition 1.3. A function f : S → R is called µ-strongly convex on X ⊆ S, if the function

x 7→ f(x)− 1
2µ∥x∥

2 is convex on X .

8

Exercise 1.3. Let f : [0, δ]→ R be a convex function for some δ > 0. Define

h(t) =
f(t)− f(0)

t
, 0 < t ≤ δ

Show that h(t) is a non-decreasing function over t ∈ (0, δ].

(Hint: Notice that for 0 < t1 < t2 ≤ δ, we have t1 = (t1/t2) · t2 + (1− t1/t2) · 0. We can

then apply the definition of convexity to upper bound f(t1).)

Exercise 1.4. 1. Suppose f : (−δ, δ)→ R is differentiable, and is convex on [0, δ). Show

that

f(t) ≥ f(0) + tf ′(0), ∀t ∈ [0, δ).

(Hint: Note that (f(t)− f(0))/t is non-decreasing and converges to f ′(0) as t ↓ 0.)

2. Suppose f : Rn → R is differentiable, and is convex on X ⊆ Rn. Show that

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩, ∀x, y ∈ X .

(Hint: Consider the function h(t) = f(x+ t(y − x)).)

We shall provide a stronger version of the second part of Exercise 1.4.

Proposition 1.1. Suppose f : Rn → R is differentiable, and X ⊆ Rn is convex. Then f is

convex on X if and only if

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩, ∀x, y ∈ X (1.3)

if and only if

⟨∇f(y)−∇f(x), y − x⟩ ≥ 0, ∀x, y ∈ X . (1.4)

Proof. The part that convexity implies (1.3) has been shown in the second part of Exercise 1.4.

To show that (1.3) implies convexity, we note that 1.1 implies

f(x) ≥ f(αx+ (1− α)y) + ⟨∇f(αx+ (1− α)y), (1− α)(x− y)⟩,
f(y) ≥ f(αx+ (1− α)y) + ⟨∇f(αx+ (1− α)y), α(y − x)⟩

for any x, y ∈ X and α ∈ [0, 1]. By multiplying the first inequality by α, the second by (1 − α)

and summing them together, we get

αf(x) + (1− α)f(y) ≥ f(αx+ (1− α)y),

which justifies that f is convex on X .

9

The inequality (1.4) follows by adding two copies of (1.3) with x and y interchanged. To

show that (1.4) implies (1.3), we note that, by the Newton-Leibniz Theorem,

f(y) = f(x) +

∫ 1

0

⟨∇f(x+ t(y − x)), y − x⟩ dt

= f(x) + ⟨∇f(x), y − x⟩+
∫ 1

0

⟨∇f(x+ t(y − x))−∇f(x), y − x⟩ dt

≥ f(x) + ⟨∇f(x), y − x⟩,

where in the last step we used ⟨∇f(x+t(y−x))−∇f(x), t(y−x)⟩ ≥ 0 that follows from (1.4).

Exercise 1.5. Suppose f : Rn → R is differentiable, and X ⊆ Rn is a convex set. Show

that f is µ-strongly convex on X if and only if

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ

2
∥y − x∥2, ∀x, y ∈ X

if and only if

⟨∇f(y)−∇f(x), y − x⟩ ≥ µ∥y − x∥2, ∀x, y ∈ X .

Definition 1.4. Let f : X → R be a convex function. Given x ∈ X , a vector g ∈ Rn is called

a subgradient of f , if

f(y) ≥ f(x) + ⟨g, y − x⟩

for all y ∈ X . The set of all subgradients of f at x is called the subdifferential of f at x, and is

denoted by ∂f(x).

Lemma 1.2. Let f : X → R be a convex function, and let x be any point that lies in the

interior of X . Then the following statements hold:

1. ∂f(x) is nonempty.

2. If f is differentiable at x, then ∂f(x) = {∇f(x)}. Conversely, if ∂f(x) contains only one

element, then f is differentiable at x.

Proof (First part). Since f is convex, its epigraph epi(f) is a convex set. It’s not hard to see

that (x, f(x)) is a boundary point of epi(f), and so by the Supporting Hyperplane Theorem,

there exists a nonzero v = (ṽ, vn+1) ∈ Rn+1 such that[
ṽ

vn+1

]T [
x′ − x

y′ − f(x)

]
≥ 0, ∀(x′, y′) ∈ epi(f),

i.e.,

ṽT(x′ − x) + vn+1(y
′ − f(x)) ≥ 0, ∀x′ ∈ X , y′ ≥ f(x′). (1.5)

It can be seen that vn+1 ≥ 0; otherwise the above inequality would not hold for sufficiently large

y′. Moreover, vn+1 cannot be zero: vn+1 = 0 would lead to

ṽT(x′ − x) ≥ 0,

10

and since x is in the interior of x, we can find a sufficiently small δ > 0 such that x − δṽ ∈ X .
By plugging in x′ = x− δṽ, we get

∥ṽ∥2 ≤ 0,

implying that ṽ = 0, contradicting the fact that v is nonzero. Therefore vn+1 is strictly positive.

Now let g = −ṽ/vn+1, and by letting y′ = f(x′), we get

f(x′) ≥ f(x) + ⟨g, x′ − x⟩, ∀x′ ∈ X ,

showing that g ∈ ∂f(x).

A proof of the second part of Lemma (1.2) can be found in [Rockafellar, 1970, Theorem 25.1].

Exercise 1.6. Consider the function f(x) = 1 −
√
1− x2 for x ∈ [−1, 1]. Prove that

∂f(−1) = ∂f(1) = ∅.

We shall also frequently use the following definitions, especially when analyzing the conver-

gence rate of algorithms.

Definition 1.5. Let f : Rn → R, and let X ⊆ Rn.

1. f is said to be G-Lipschitz continuous on X , if

|f(x)− f(y)| ≤ G∥x− y∥

for any x, y ∈ X .

2. f is said to be L-smooth on X , if f is differentiable on Rn, and

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥

for any x, y ∈ X .

Some useful properties of Lipschitz continuous and smooth functions are summarized as

follows.

Proposition 1.2 (Corollary of [Rockafellar, 1970, Theorem 24.7]). Let f : Rn → R be a convex

function, and let X ⊆ Rn be compact. Then there exists G > 0 such that

1. f(x) is G-Lipschitz continuous on X .

2. ∥g∥ ≤ G for any g ∈ ∂f(x) and any x ∈ X .

Proposition 1.3. Let f : Rn → R be differentiable. Then any one of the following conditions

with x, y ranging over Rn is necessary and sufficient for f to be convex and L-smooth on Rn:

0 ≤ f(y)− (f(x) + ⟨∇f(x), y − x⟩) ≤ L

2
∥y − x∥2, (1.6)

11

∥∇f(y)−∇f(x)∥2 ≤ 2L(f(y)− (f(x) + ⟨∇f(x), y − x⟩)), (1.7)

∥∇f(y)−∇f(x)∥2 ≤ L⟨∇f(y)−∇f(x), y − x⟩, (1.8)

0 ≤ ⟨∇f(y)−∇f(x), y − x⟩ ≤ L∥y − x∥2. (1.9)

Proof. The situation when L = 0 is trivial. We now assume L > 0.

• f is convex and smooth ⇒ (1.6): Suppose f is convex and L-smooth on Rn. The first

inequality (1.6) follows from Proposition 1.1. To show the second inequality, by the Newton-

Leibnitz Theorem, we get

f(y)− f(x) =

∫ 1

0

⟨∇f(x+ t(y − x)), y − x⟩ dt

= ⟨∇f(x), y − x⟩+
∫ 1

0

⟨∇f(x+ t(y − x))−∇f(x), y − x⟩ dt

≤ ⟨∇f(x), y − x⟩+
∫ 1

0

∥∇f(x+ t(y − x))−∇f(x)∥∥y − x∥ dt

≤ ⟨∇f(x), y − x⟩+
∫ 1

0

Lt∥y − x∥2 dt

= ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2,

which proves (1.6).

• (1.6)⇒ (1.7): Suppose (1.6) holds. We fix x ∈ Rn and construct ϕ(y) = f(y)−⟨∇f(x), y−x⟩.
We then have, for any y ∈ Rn,

ϕ(y) = f(y)− ⟨∇f(x), y − x⟩ ≥ f(x) = ϕ(x),

showing that ϕ(y) achieves its global minimum over Rn at x. Consequently

ϕ(x) ≤ ϕ

(
y − 1

L
∇ϕ(y)

)
= f

(
y − 1

L
∇ϕ(y)

)
−
〈
∇f(x), y − 1

L
∇ϕ(y)− x

〉
≤ f(y) +

〈
∇f(y),− 1

L
∇ϕ(y)

〉
+

1

2L
∥∇ϕ(y)∥2 −

〈
∇f(x), y − 1

L
∇ϕ(y)− x

〉
,

and by plugging in ∇ϕ(y) = ∇f(y)−∇f(x), we can get

ϕ(x) ≤ f(y)− ⟨∇f(x), y − x⟩ − 1

2L
∥∇f(y)−∇f(x)∥2,

which is just (1.7).

• (1.7) ⇒ (1.8): This follows by adding two copies of (1.7) with x and y interchanged.

• (1.8)⇒ f is convex and smooth: Suppose (1.8) holds. Since the norm is always nonnegative,

we get ⟨∇f(y) − ∇f(x), y − x⟩ ≥ 0, which, by Proposition 1.1, implies that f is convex on

Rn. Then we apply Cauchy-Schwarz inequality on the right-hand side of (1.8) and get

∥∇f(y)−∇f(x)∥2 ≤ L∥∇f(y)−∇f(x)∥∥y − x∥, ∀x, y ∈ Rn,

which implies ∥∇f(y) − ∇f(x)∥ ≤ L∥y − x∥ for all x, y ∈ Rn. Therefore f is L-smooth on

Rn.

12

• (1.6) ⇒ (1.9): This follows by adding two copies of (1.6) with x and y interchanged.

• (1.9) ⇒ (1.6): Suppose (1.9) holds. By Proposition 1.1, the first inequality in (1.9) implies

the first inequality in (1.6). Then, by Newton-Leibniz Theorem,

f(y)− (f(x) + ⟨∇f(x), y − x⟩) =
∫ 1

0

⟨∇f(x+ t(y − x))−∇f(x), y − x⟩ dt

≤
∫ 1

0

Lt∥y − x∥2 dt = L

2
∥y − x∥2,

which proves the second inequality in (1.6).

The proof is now complete.

Remark 1.1. Suppose X ⊆ Rn is a convex set. If f : Rn → R is convex and L-smooth on X , then
it’s not hard to see from the above proof that (1.6) and (1.9) hold for any x, y ∈ X . However,

the converse is in general not true, i.e., (1.6) or (1.9) for any x, y ∈ X does not imply that f is

L-smooth on X (though convexity can be implied). A counterexample is given by

f(x1, x2) = x1x2, ∀(x1, x2) ∈ R2, X = {(x, 0) : x ∈ R}.

We then have

∇f(x1, x2) = (x2, x1),

and

f(y1, 0)− f(x1, 0)− ⟨∇f(x1, 0), (y1, 0)− (x1, 0)⟩ = 0,

showing that (1.6) holds for L = 0 for any x, y ∈ X . On the other hand, f is obviously not

0-smooth on X .
(Something to think about if you are really interested: What if X is convex and open?)

When the function f is further twice continuously differentiable, we can check the convexity

and smoothness of f via the Hessian matrix of f .

Proposition 1.4. Let f : Rn → R be twice continuously differentiable, and let X ⊆ Rn be a

convex set with a nonempty interior. Then f is convex and L-smooth on X if and only if

0 ⪯ Hf (x) ⪯ LI, ∀x ∈ X ,

where Hf (x) denotes the Hessian matrix of f at x.

Proof. • Necessity: Supose f is convex and L-smooth on X . Let x ∈ intX and h ∈ Rn be

arbitrary. Denote Rh(t) = ∇f(x + th) −∇f(x) − tHf (x)h, and we have ∥Rh(t)∥ = o(t) as

t→ 0. Consequently, by (1.9),

0 ≤ ⟨∇f(x+ th)−∇f(x), th⟩ = t2hTHf (x)h+ t⟨h,Rh(t)⟩ ≤ Lt2∥h∥2.

We then divide the above inequality by t2 and get

0 ≤ hTHf (x)h+
⟨h,Rh(t)⟩

t
≤ L∥h∥2.

13

By letting t→ 0 and noting that ∥Rh(t)∥ = o(t), we get

0 ≤ hTHf (x)h ≤ L∥h∥2,

which holds for all h ∈ Rn. Therefore by letting h be an eigenvector associated with eigenvalue

λmin(Hf (x)) and λmax(Hf (x)) respectively, we get λmin(Hf (x)) ≥ 0 and λmax(Hf (x)) ≤ L,

which is equivalent to 0 ⪯ Hf (x) ⪯ LI.

Now if X\ intX is nonempty, for any x ∈ X\ intX , we can always find a sequence (xn)n∈N

in intX such that xn → x: Let x0 ∈ intX be arbitrary, and let

xn =
1

n+ 1
x0 +

(
1− 1

n+ 1

)
x.

Then obviously xn ∈ X and xn → x. To show that xn ∈ intX , let ϵ > 0 be such that

x0 + ϵv ∈ X for any v ∈ Rn with ∥v∥ < 1. Then

xn +
1

n+ 1
ϵv =

1

n+ 1
(x0 + ϵv) +

(
1− 1

n+ 1

)
x ∈ X

for any ∥v∥ < 1, showing that the open ball centered at xn with radius ϵ/(n+ 1) is a subset

of X . Therefore xn ∈ intX . Then 0 ⪯ Hf (x) ⪯ LI follows by the continuity of Hf (x) over

x ∈ Rn.

• Sufficiency: Suppose 0 ⪯ Hf (x) ⪯ LI for all x ∈ X . Then for any x, y ∈ X , by the

Newton-Leibniz rule, we have

∇f(y)−∇f(x) =
∫ 1

0

Hf (x+ t(y − x)) (y − x) dt,

and by taking the norm, we get

∥∇f(y)−∇f(x)∥ =
∥∥∥∥∫ 1

0

Hf (x+ t(y − x)) (y − x) dt

∥∥∥∥
≤
∫ 1

0

∥Hf (x+ t(y − x)) (y − x)∥ dt

≤
∫ 1

0

∥Hf (x+ t(y − x))∥2 ∥(y − x)∥ dt.

Since 0 ⪯ Hf (x) ⪯ LI for all x ∈ X , we have ∥Hf (x+ t(y − x))∥2 ≤ L for all t ∈ [0, 1], which

then implies

∥∇f(y)−∇f(x)∥ ≤ L∥y − x∥,

showing that f is L-smooth on X . To show that f is convex on X , we still start from

∇f(y)−∇f(x) =
∫ 1

0
Hf (x+ t(y − x)) (y − x) dt but this time we take the inner product:

⟨∇f(y)−∇f(x), y − x⟩ =
∫ 1

0

(y − x)THf (x+ t(y − x)) (y − x) dt ≥ 0,

where we used the fact that Hf (x+ t(y−x)) is positive semidefinite for all t ∈ [0, 1]. We can

now employ Proposition 1.1 to complete the proof.

14

Exercise 1.7. Suppose f : Rn → R is L-smooth and µ-strongly convex on Rn. Prove that

1. µ ≤ L, with equality only if f(x) = L
2 ∥x∥

2 + qTx + r, ∀x ∈ Rn for some q ∈ Rn and

r ∈ R.

2. The function g(x) = f(x)− 1
2µ∥x∥

2 is (L− µ)-smooth on Rn.

(Hint: Show that the condition (1.9) holds for g.)

3. If f is further twice continuously differentiable, then µ ≤ λmin(Hf (x)) ≤ λmax(Hf (x)) ≤
L for all x ∈ Rn, where Hf (x) denotes the Hessian matrix of f at x.

Conversely, show that, if f is twice continuously differentiable and µ ≤ λmin(Hf (x)) ≤
λmax(Hf (x)) ≤ L for all x ∈ Rn, then f is µ-strongly convex and L-smooth.

1.3 Gradient Descent and Its Convergence Analysis

Consider the following unconstrained optimization problem:

min
x∈Rd

f(x)

where f is differentiable. The gradient descent (GD) method for solving this optimization prob-

lem is given by the following iteration:

xt+1 = xt − ηt∇f(xt).

There are different ways of choosing the step size ηt, and the following are some classic choices:

1. Constant step size ηt = η. This choice is convenient for convergence rate analysis. For

example, it can be shown that when f is convex and L-smooth, then as long as η ≤ 1/L, GD

has a convergence rate guarantee f(xt)− f(x∗) = O(1/t) (see Theorem 1.3).

2. The Wolfe conditions: The Wolfe conditions consist of two conditions:

(a) The Armijo condition: The step size ηt should satisfy

f(xt − ηt∇f(xt)) ≤ f(xt)− c1ηt∥∇f(xt)∥2

for some constant c1 ∈ (0, 1). The Armijo condition guarantees that there will be sufficient

decrease in the objective value.

(b) The curvature condition: The step size ηt should satisfy

⟨∇f(xt − ηt∇f(xt)),∇f(xt)⟩ ≤ c2∥∇f(xt)∥2

for some constant c2 ∈ (c1, 1). The curvature condition rules out unacceptably short

steps.

We shall not discuss more about the Wolfe conditions in this course. Interested readers may

read [Nocedal and Wright, 2006, Section 3.1].

15

Exercise 1.8. Suppose f : Rd → R is L-smooth. Show that, as long as ηt ≤ 2/L, we have

f(xt+1) ≤ f(xt), i.e., f(xt) is non-increasing in t.

Exercise 1.9. Construct a “counterexample” in which gradient descent does not converge

to the optimal solution. The counterexample should satisfy the following requirements:

1. The objective function f : Rn → R is continuously differentiable and convex.

2. f attains its global minimum at some x∗ ∈ Rn.

3. f(xt), generated by gradient descent, is strictly decreasing.

4.
∑∞

t=0 ηt = +∞.

5. f(xt) does not converge to f(x∗).

You may justify your construction of the example numerically.

We now provide analysis of the convergence rate of GD for convex problems.

Theorem 1.3. Suppose f : Rd → R is L-smooth and convex, and the set of global minima

X ∗ =
{
x∗ ∈ Rd : f(x∗) = infx f(x)

}
is nonempty. Then by choosing the step sizes to satisfy ηt = η ∈ (0, 1/L], we have

f(xt)− f(x∗) ≤ ∥x0 − x∗∥2

2ηt

for all t ≥ 1, where x∗ ∈ X ∗ is arbitrary. Moreover, xt converges to some point in X ∗.

Proof. Let x∗ ∈ X ∗ be arbitrary, and denote gt = ∇f(xt). We have

∥xt − x∗∥2 = ∥xt+1 − x∗ + ηtgt∥2

= ∥xt+1 − x∗∥2 + 2ηt⟨gt, xt+1 − x∗⟩+ η2t ∥∇f(xt)∥2

= ∥xt+1 − x∗∥2 − 2ηt⟨gt, x∗ − xt+1⟩+ ∥xt+1 − xt∥2,

which leads to

f(xt) +
1

2ηt
∥xt+1 − x∗∥2

= f(xt) +
1

2ηt

(
∥xt − x∗∥2 + 2ηt⟨gt, x∗ − xt+1⟩ − ∥xt+1 − xt∥2

)
= f(xt) + ⟨gt, x∗ − xt⟩+

1

2ηt

(
∥xt − x∗∥2 + 2ηt⟨gt, xt − xt+1⟩ − ∥xt+1 − xt∥2

)
.

(1.10)

Since f is convex and gt = ∇f(xt), we have

f(xt) + ⟨gt, x∗ − xt⟩ ≤ f(x∗).

16

Therefore

f(xt) +
1

2ηt
∥xt+1 − x∗∥2

≤ f(x∗) +
1

2ηt

(
∥xt − x∗∥2 + 2ηt⟨gt, xt − xt+1⟩ − ∥xt+1 − xt∥2

)
.

(1.11)

Then, since f is L-smooth, we have

f(xt+1) ≤ f(xt) + ⟨∇f(xt), xt+1 − xt⟩+
L

2
∥xt+1 − xt∥2.

Consequently,

f(xt+1) +
1

2ηt
∥xt+1 − x∗∥2

≤ f(xt) +
1

2ηt
∥xt+1 − x∗∥2 + ⟨∇f(xt), xt+1 − xt⟩+

L

2
∥xt+1 − xt∥2

≤ f(x∗) +
1

2ηt

(
∥xt − x∗∥2 + 2ηt⟨gt, xt − xt+1⟩ − ∥xt+1 − xt∥2

)
+ ⟨∇f(xt), xt+1 − xt⟩+

L

2
∥xt+1 − xt∥2

= f(x∗) +
1

2ηt
∥xt − x∗∥2 − 1

2ηt
(1− ηtL) ∥xt+1 − xt∥2

≤ f(x∗) +
1

2ηt
∥xt − x∗∥2,

where in the second step we plugged in (1.11), and in the last step we used ηtL ≤ 1. In other

words,

f(xt+1)− f(x∗) ≤ 1

2η
(∥xt − x∗∥2 − ∥xt+1 − x∗∥2). (1.12)

By taking the telescoping sum, we get

t∑
τ=1

(f(xτ)− f(x∗)) ≤ 1

2η
(∥x0 − x∗∥2 − ∥xt − x∗∥2) ≤ 1

2η
∥x0 − x∗∥2.

Finally, we apply the result of Exercise 1.8 to obtain

f(xt)− f(x∗) ≤ 1

t

t∑
τ=1

(f(τ)− f((̃x))) ≤ ∥x0 − x∗∥2

2ηt
,

which completes the convergence rate analysis.

To show that xt converges to some point in X ∗, we note that (1.11) together with f(xt+1) ≥
f(x∗) implies ∥xt+1−x∗∥2 ≤ ∥xt−x∗∥2, showing that the sequence (xt)t∈N is bounded. Therefore

there exist some x̃ ∈ Rd and a subsequence (xtk)k∈N such that xtk → x̃ as k → ∞. By the L-

smoothness of f , we have

f(xt+1) ≤ f(xt) + ⟨∇f(xt), xt+1 − xt⟩+
L

2
∥xt+1 − xt∥2

= f(xt)− η

(
1− ηL

2

)
∥∇f(xt)∥2,

17

and by taking the limit t→∞ and noting 1− ηL/2 > 0, we see that ∥∇f(xt)∥2 → 0 as t→∞.

It then follows from the continuity of ∇f that

∇f(x̃) = lim
k→∞

∇f(xtk) = 0.

Therefore x̃ ∈ X ∗, and we have ∥xt+1 − x̃∥2 ≤ ∥xt − x̃∥2 for all t. Now let ϵ > 0 be arbitrary.

Since xtk → x̃ as k →∞, there exists K ∈ N such that ∥xtK − x̃∥2 ≤ ϵ, and consequently,

∥xt − x̃∥2 ≤ ∥xtK − x̃∥2 ≤ ϵ

for all t ≥ tK . By the arbitrariness of ϵ > 0, we see that xt → x̃ ∈ X ∗ as t→∞.

The following theorem shows that, the convergence rate of GD can be improved if f is strongly

convex.

Theorem 1.4. Suppose f : Rd → R is µ-strongly convex and L-smooth. Then by choosing the

step size to satisfy ηt = η ∈ (0, 2/L), we have

∥xt+1 − x∗∥ ≤ max{|1− ηµ|, |ηL− 1|} · ∥xt − x∗∥,

where x∗ is the (unique) global minimizer of f over Rd. Particularly, when µ = 2/(µ + L),

max{|1− ηµ|, |ηL− 1|} achieves the minimum value, and

∥xt+1 − x∗∥ ≤ L− µ

L+ µ
∥xt − x∗∥.

Proof. Without loss of generality we assume that µ < L. We shall prove a stronger statement:1

For any x, y ∈ Rd, we have

∥y+ − x+∥ ≤ max{|1− ηµ|, |ηL− 1|} · ∥y − x∥,

where

x+ = x− η∇f(x), y+ = y − η∇f(y).

We have

∥y+ − x+∥2 = ∥y − x− η(∇f(y)−∇f(x))∥2

= ∥y − x∥2 − 2η⟨∇f(y)−∇f(x), y − x⟩+ η2∥∇f(y)−∇f(x)∥2.

Fix x temporarily and let ϕ(z) = f(z)− 1
2µ∥z−x∥2. As Exercise 1.7 shows, ϕ is (L−µ)-smooth.

By applying (1.8) to ϕ, we get

∥∇f(y)−∇f(x)− µ(y − x)∥2 ≤ (L− µ)⟨∇f(y)−∇f(x)− µ(y − x), y − x⟩,

which implies

⟨∇f(y)−∇f(x), y − x⟩ ≥ µL

µ+ L
∥y − x∥2 + 1

µ+ L
∥∇f(y)−∇f(x)∥2. (1.13)

We now consider two cases:

1This statement is equivalent to saying that the mapping x 7→ x − η∇f(x) is a contraction mapping over Rd

with contraction coefficient max{|1− ηµ|, |ηL− 1|}.

18

1. 0 < η ≤ 2/(µ + L). In this case, we let L′ = 2/η − µ, and it can be seen that L′ ≥ L.

Therefore f is also L′-smooth, and (1.13) holds with L replaced by L′. Consequently,

∥y+ − x+∥2 ≤ ∥y − x∥2 − 2η

(
µL′

µ+ L′ ∥y − x∥2 + 1

µ+ L′ ∥∇f(y)−∇f(x)∥
2

)
+ η2∥∇f(y)−∇f(x)∥2

=

(
1− 2ηµL′

µ+ L′

)
∥y − x∥2 − η

(
2

µ+ L′ − η

)
∥∇f(y)−∇f(x)∥2

= (1− ηµ)2∥y − x∥2.

Note that in this case we have 1− ηµ ≥ |ηL− 1|.

2. 2/(µ+ L) < η < 2/L. In this case, we let µ′ = 2/η − L, and it can be seen that 0 < µ′ < µ.

Therefore f is also µ′-strongly convex, and (1.13) holds with µ replaced by µ′. Consequently,

we have

∥y+ − x+∥2 ≤ ∥y − x∥2 − 2η

(
µ′L

µ′ + L
∥y − x∥2 + 1

µ′ + L
∥∇f(y)−∇f(x)∥2

)
+ η2∥∇f(y)−∇f(x)∥2

=

(
1− 2ηµ′L

µ′ + L

)
∥y − x∥2 − η

(
2

µ′ + L
− η

)
∥∇f(y)−∇f(x)∥2

= (ηL− 1)2∥y − x∥2.

Note that in this case we have ηL− 1 > |1− ηµ|.

Combining these two cases, we get the desired results.

Exercise 1.10. Show that when f is µ-strongly convex and L-smooth, under the condition

ηt = η ∈ (0, 2/L), the convergence rate of GD in terms of f(xt)− f(x∗) is given by

f(xt)− f(x∗) ≤ L∥x0 − x∗∥2

2
· αt,

where

α = max{(1− ηµ)2, (ηL− 1)2}.

We now provide some discussions:

1. The two theorems presented above analyze the convergence behavior of GD in terms of the

convergence rate. The convergence rate is a quantitative characterization of how fast the

algorithm’s output approaches optimality, or how fast the sub-optimality of the algorithm’s

output decreases as the number of iterations increases. Specifically, in Theorem 1.3 and

in Exercise 1.10, we use f(xt) − f(x∗) to quantify the sub-optimality of the output of the

algorithm at step t, and the convergence rates describes how fast f(xt)− f(x∗) decreases as

t increases.

19

Apart from f(xt) − f(x∗), there are other metrics for quantifying the sub-optimality of the

algorithm’s output. Which metric is appropriate for theoretical analysis depends on the

optimization algorithm itself and the properties of the problem to be solved.

The convergence rate is one of the central notions of performance guarantees in theoretical

studies of optimization algorithms.

2. The convergence rate is closely related with the notion of iteration complexity, which counts

the number of iterations needed for achieving an arbitrary degree of optimality. For example,

from Theorem 1.3, we can derive that, for an arbitrary ϵ > 0, if the number of iterations t

satisfies

t ≥ ∥x0 − x∗∥2

2η
· 1
ϵ
= O

(
1

ϵ

)
,

then

f(xt)− f(x∗) ≤ ϵ.

In other words, the number of iterations needed to achieve f(xt)− f(x∗) ≤ ϵ is on the order

of O(1/ϵ), which gives the iteration complexity of GD under the conditions of Theorem 1.3.

The iteration complexity is another critical notion for evaluating the efficiency of the algo-

rithm. In general, the iteration complexity can be derived from the convergence rate. The

iteration complexity can be more useful than the convergence rate if we are further inter-

ested in the scalability of the algorithm. For example, suppose the convergence rates of two

algorithms are given by

f(xt)− f(x∗) ≤ C · d
t

and f(xt)− f(x∗) ≤ C ·
√

d

t
.

We see that the right-hand sides have different dependences on the problem dimension d.

However, their iteration complexities are then

O

(
d

ϵ

)
and O

(
d

ϵ2

)
,

which indicates that the two algorithms in fact have similar (theoretical) scalability as the

problem dimension d increases.

1.4 Stochastic Gradient Descent

The stochastic gradient descent (SGD) can be viewed as a variant of GD, which solves the

unconstrained optimization problem minx∈Rd f(x) by the following iterations:

xt+1 = xt − ηt G(xt; ξt),

where ξ1, ξ2, . . . is a sequence of independent random variables, and G(x; ξt) is a stochastic

gradient satisfying

E[G(x; ξt)] = ∇f(x)

20

for all x ∈ Rd. In other words, we replace the true gradient in GD by a random estimator which

only equals the true gradient in expectation. Naturally, the stochastic gradient descent can be

applied in situations where obtaining the true gradient is not possible or is expensive, but a

stochastic gradient can be obtained relatively easily. A typical scenario is supervised learning

with a large data set, which can be formulated as follows:

min
θ∈Rd

R(θ) =
1

D

D∑
i=1

ℓ(xi, yi; θ).

Here {(xi, yi) : i = 1, . . . , D} is a labeled dataset with D being very large, θ represents the

parameterized model, and ℓ(x, y; θ) is the loss function that evaluates how the model θ fits the

single data (x, y). The goal is to find the best model that minimizes the empirical risk R(θ). Since

D is very large, it may be costly to evaluate the full gradient ∇R(θ) = 1
D

∑D
i=1∇θℓ(xi, yi; θ).

However, constructing a stochastic gradient is not hard: At each time step t, we choose a

batch size Bt and randomly sample a small subset Bt ⊆ {1, . . . , D} of size Bt from the uniform

distribution. We then construct

G(θ;Bt) =
1

|Bt|
∑
i∈Bt

∇θℓ(xi, yi; θ).

It’s not hard to check that E[G(θ;Bt)] = ∇R(θ), and as long as the batch size Bt is small enough,

evaluating G(θ;Bt) is relatively easy. The SGD method is then given by

θt+1 = θt − ηt G(θt;Bt)

= θt − ηt ·
1

|Bt|
∑
i∈Bt

∇θℓ(xi, yi; θ).

In order to establish convergence results for SGD, we need to impose assumptions on the

variance (or the second moment) of the stochastic gradient. The following is a commonly-used

assumption for establishing the convergence rate of SGD.

Assumption 1.1. There exists σ > 0 such that

E
[
∥G(x; ξt)−∇f(x)∥2

]
≤ σ2

for all x ∈ Rd and all t ∈ N.

We now derive the convergence rate of SGD.

Theorem 1.5. Suppose f is convex and L-smooth, and suppose G(x; ξt) is an unbiased esti-

mator of ∇f(x) for each t and satisfies Assumption 1.1. Furthermore, suppose we choose the

step sizes to satisfy ηt ∈ (0, 1/(2L)]. Then the iterates of the stochastic gradient descent method

satisfies

E[f(x̄t)− f(x∗)] ≤
1
2E
[
∥x0 − x∗∥2

]
+ σ2

∑t−1
τ=0 η

2
τ∑t−1

τ=0 ητ
,

where

x̄t =

∑t
τ=1 ητ−1xτ∑t
τ=1 ητ−1

.

21

Proof. Denote gt = G(xt; ξt). The identity (1.10) will still apply here:

f(xt) +
1

2ηt
∥xt+1 − x∗∥2

= f(xt) + ⟨gt, x∗ − xt⟩+
1

2ηt

(
∥xt − x∗∥2 + 2ηt⟨gt, xt − xt+1⟩ − ∥xt+1 − xt∥2

)
.

(1.10)

Notice that, since E[gt|xt] = ∇f(xt), we get

E[f(xt) + ⟨gt, x∗ − xt⟩|xt] = f(xt) + ⟨∇f(xt), x
∗ − xt⟩ ≤ f(x∗),

and consequently,

f(xt) +
1

2ηt
E
[
∥xt+1 − x∗∥2|xt

]
≤ f(x∗) +

1

2ηt
∥xt − x∗∥2 + E[⟨gt, xt − xt+1⟩|xt]−

1

2ηt
E
[
∥xt+1 − xt∥2|xt

]
= f(x∗) +

1

2ηt
∥xt − x∗∥2 + E[⟨∇f(xt), xt − xt+1⟩|xt]

+ E[⟨gt −∇f(xt), xt − xt+1⟩|xt]−
1

2ηt
E
[
∥xt+1 − xt∥2|xt

]
Next, by the L-smoothness of f , we have

f(xt+1) ≤ f(xt) + ⟨∇f(xt), xt+1 − xt⟩+
L

2
∥xt+1 − xt∥2,

which leads to

E
[
f(xt+1) +

1

2ηt
∥xt+1 − x∗∥2

∣∣∣∣xt

]
≤ f(x∗) +

1

2ηt
∥xt − x∗∥2 − 1

2ηt
(1− ηtL)E

[
∥xt+1 − xt∥2|xt

]
+ E[⟨gt −∇f(xt), xt − xt+1⟩|xt] .

Moreover, by the inequality 2ab ≤ a2/θ + θb2, we see that2

E[⟨gt −∇f(xt), xt − xt+1⟩|xt] ≤
1

2
E
[
2ηt∥gt −∇f(xt)∥2 +

1

2ηt
∥xt+1 − xt∥2

∣∣∣∣xt

]
≤ ηtσ

2 +
1

4ηt
E
[
∥xt+1 − xt∥2|xt

]
.

2In fact, this step can be further strengthened if we note that for unconstrained SGD,

E[⟨gt −∇f(xt), xt − xt+1⟩|xt] = ηt E[⟨gt −∇f(xt), gt⟩|xt]

= ηtE
[
∥gt −∇f(xt)∥2|xt

]
+ ηtE[⟨gt −∇f(xt),∇f(xt)⟩|xt]

= ηtE
[
∥gt −∇f(xt)∥2|xt

]
≤ ηtσ

2.

By pursuing this approach, the final convergence rate will be the same but the condition on the step size ηt will

be weaker.

22

Therefore

E
[
f(xt+1) +

1

2ηt
∥xt+1 − x∗∥2

∣∣∣∣xt

]
≤ f(x∗) +

1

2ηt
∥xt − x∗∥2 − 1

2ηt

(
1

2
− ηtL

)
E
[
∥xt+1 − xt∥2|xt

]
+ ηtσ

2

≤ f(x∗) +
1

2ηt
∥xt − x∗∥2 + ηtσ

2,

where we used ηtL ≤ 1/2 for all t. In other words,

E[ηt(f(xt+1)− f(x∗))|xt] ≤
1

2
E
[
∥xt − x∗∥2 − ∥xt+1 − x∗∥2|xt

]
+ η2t σ

2.

By taking the total expectation and the telescoping sum, we get

E

[∑t
τ=1 ητ−1(f(xτ)− f(x∗))∑t

τ=1 ητ−1

]
≤

1
2E
[
∥x0 − x∗∥2

]
+ σ2

∑t−1
τ=0 η

2
τ∑t−1

τ=0 ητ
,

and since the convexity of f implies

f(x̄t) ≤
∑t

τ=1 ητ−1f(xτ)∑t
τ=1 ητ−1

for x̄t =
(∑t

τ=1 ητ−1xτ

)
/
(∑t

τ=1 ητ−1

)
, we get

E[f(x̄t)− f(x∗)] ≤
1
2E
[
∥x0 − x∗∥2

]
+ σ2

∑t−1
τ=0 η

2
τ∑t−1

τ=0 ητ
,

which is the desired result.

Corollary 1.1. Suppose the conditions of Theorem 1.5 are satisfied.

1. If we choose the step sizes to satisfy ηt = c/(2L
√
t+ 1) for some c ∈ (0, 1], then

E[f(x̄t)− f(x∗)] ≤ O

(
ln t√
t

)
.

2. If we plan ahead the total number of iterations to be T , and set the step sizes to be ηt = η =

c/(2L
√
T + 1) for some c ∈ (0, 1], then

E[f(x̄T)− f(x∗)] ≤ O

(
1√
T

)
,

and the iteration complexity to achieve E[f(x̄T)− f(x∗)] is given by O(1/ϵ2).

For strongly convex and smooth objective functions, we have the following results on the

convergence rate of SGD.

Theorem 1.6. Suppose f is µ-strongly convex and L-smooth, and suppose G(x; ξt) is an unbi-

ased estimator of ∇f(x) for each t and satisfies Assumption 1.1. Let the step sizes be ηt =
2

α(t+t0)

23

where α ∈ (0, µ] and t0 ≥ 1 is sufficiently large such that ηt ≤ 1/(2L) for all t ∈ N. Then the

iterates of SGD satisfies

f(x̄t)− f(x∗) ≤ O

(
1

t

)
,

where

x̄t =

t∑
τ=1

2(τ + t0 − 2)

t(t+ 2t0 − 3)
xτ

We postpone the proof of Theorem 1.6 to Appendix 1.A.

1.5 Other Variants of Gradient Descent

Subgradient descent. The subgradient descent method solves the unconstrained optimization

problem minx∈Rd f(x) in which f : Rd → R is convex but potentially non-smooth. The iterations

of the subgradient descent method is given by

xt+1 = xt − ηtgt,

where gt is an arbitrary element of the subdifferential ∂f(xt).

Theorem 1.7. Let f : Rd → R be a convex and G-Lipschitz continuous function. Let xt be

generatd by the subgradient descent method with step size ηt ∝ 1/
√
t+ 1. Then

f(x̄t)− f(x∗) ≤ O

(
ln t√
t

)
, where x̄t =

∑t−1
τ=0 ητxτ∑t−1
τ=0 ητ

.

Proof (Proof sketch). We can still start from (1.10):

f(xt) +
1

2ηt
∥xt+1 − x∗∥2

= f(xt) + ⟨gt, x∗ − xt⟩+
1

2ηt

(
∥xt − x∗∥2 + 2ηt⟨gt, xt − xt+1⟩ − ∥xt+1 − xt∥2

)
.

(1.10)

Also note that f(xt) + ⟨gt, x∗ − xt⟩ ≤ f(x∗) by the definition of subgradients. Furthermore, we

have 2ηt⟨gt, xt − xt+1⟩ ≤ η2t ∥gt∥2 + ∥xt − xt+1∥2 ≤ η2tG
2 + ∥xt − xt+1∥2. Summarizing these

bounds, it can be shown that

ηtf(xt) +
1

2
∥xt+1 − x∗∥2 ≤ ηtf(x

∗) +
1

2
∥xt − x∗∥2 + η2tG

2

2
.

We can now take the telescoping sum and use Jensen’s inequality to complete the proof.

Projected gradient descent. Projected gradient decent (PGD) can be applied to constrained

optimization problems of the form

min
x∈X

f(x)

24

where f is convex and smooth, and X ⊆ Rd is a closed convex subset for which the projection

operator PX is easy to compute. The iterations of PGD is given by

xt+1 = PX [xt − ηt∇f(xt)].

When the true gradient∇f(xt) is replaced by a stochastic gradient G(xt; ξt), we get the projected

stochastic gradient descent (PSGD) method:

xt+1 = PX [xt − ηt G(xt; ξt)].

When f is assumed to be convex and L-smooth, the analysis of PGD or PSGD starts from

the observation that

xt+1 = PX [xt − ηtgt] ⇐⇒ ⟨xt − ηtgt − xt+1, z − xt+1⟩ ≤ 0, ∀z ∈ X

(see Exercise 1.2). By letting z = x∗ and noting that ∥xt−xt+1∥2+ ∥x∗−xt+1∥2−∥x∗−xt∥2 =

2⟨xt − xt+1, x
∗ − xt+1⟩, we can derive the following inequality version of (1.10):

f(xt) +
1

2ηt
∥xt+1 − x∗∥2

≤ f(xt) + ⟨gt, x∗ − xt⟩+
1

2ηt
(∥xt − x∗∥2 + 2ηt⟨gt, xt − xt+1⟩ − ∥xt+1 − xt∥2).

(1.14)

The subsequent steps are almost identical to those of GD or SGD.

Exercise 1.11. Let f : X → R be convex and L-smooth, and let xt be generated by the

projected gradient descent iterations with step sizes ηt = η ∈ (0, 2/L). Show that f(xt) is

non-increasing.

(Hint: By the L-smoothness of f , we have

f(xt+1) ≤ f(xt) + ⟨∇f(xt), xt+1 − xt⟩+
L

2
∥xt+1 − xt∥2.

Then show that

⟨∇f(xt), xt+1 − xt⟩ ≤ −
1

η
∥xt+1 − xt∥2

by using the result of Exercise 1.2.)

Exercise 1.12. Let X ⊆ Rd be closed and convex. Suppose f : Rn → R is continuously

differentiable, and is µ-strongly convex and L-smooth on X . Let xt be generated by the

projected gradient descent iterations with a constant step size ηt = η ∈ (0, 2/L).

1. Show that ∥xt+1 − x∗∥2 ≤ ∥xt − x∗ − η(∇f(xt)−∇f(x∗))∥2.

(Hint: First prove that x∗ = PX [x∗ − η∇f(x∗)] for the constrained minimizer x∗.

25

Then apply the nonexpansiveness of the projection operator.)

2. Derive the convergence rate of the projected gradient descent iterations. Note that

this time, since f is strongly convex only on a subset X of Rd, it may not be valid to

use the inequality (1.13). For simplicity, you may assume that f is twice continuously

differentiable over Rn.

Further generalizations of PGD and PSGD for constrained/composite optimization problems

include the mirror descent (MD) method [Beck and Teboulle, 2003,Bubeck, 2015], the proximal

gradient descent method [Parikh and Boyd, 2014], etc.

Nesterov’s accelerated gradient descent. Nesterov’s accelerated gradient descent is a (class

of) first-order method that achieves faster convergence than the vanilla (i.e., original) gradient

descent method for smooth convex optimization.

Consider the unconstrained minimization problem minx∈Rd f(x). When f is convex and

L-smooth, a commonly used version of Nesterov’s accelerated GD is given by

xt+1 = yt −
1

L
∇f(yt),

yt+1 = xt+1 +
αt+1(1− αt)

αt
(xt+1 − xt),

(1.15)

where the sequence αt ∈ (0, 1) is generated by arbitrarily choosing α0 ∈ (0, 1) and solving

α2
t+1 = (1 − αt+1)α

2
t , and we initialize with y0 = x0. When f is further µ-strongly convex for

some µ > 0, a commonly used version of Nesterov’s accelerated GD is given by

xt+1 = yt −
1

L
∇f(yt),

yt+1 = xt+1 +
1−
√
κ

1 +
√
κ
(xt+1 − xt),

(1.16)

where κ = µ/L, and we initialize with y0 = x0.

The convergence of Nesterov’s accelerated GD is given by the following theorem, whose proof

can be found in [Nesterov, 2018, Section 2.2.1] (see Theorem 2.2.1 and Lemma 2.2.4 therein).

Theorem 1.8. Let f : Rd → R be convex and L-smooth, and suppose x∗ is a minimizer of

f(x) over x ∈ Rd.

1. Let xt be generated by (1.15). Then

f(xt)− f(x∗) ≤ O

(
1

t2

)
.

2. If f is further µ-strongly convex for some µ > 0, and let xt be generated by (1.16). Then

f(xt)− f(x∗) ≤
(
1−
√
κ
)t (

f(x0)− f(x∗) +
µ

2
∥x0 − x∗∥2

)
,

where κ = µ/L.

26

Convex & Lipschitz Convex & smooth Strongly convex & smooth

(Projected) (Sub)GD O

(
ln t√
t

)
O

(
1

t

)
O
(
(1− cκ)

t
)

Stochastic (Sub)GD O

(
ln t√
t

)
O

(
ln t√
t

)
O

(
1

t

)
Nesterov’s method N/A O

(
1

t2

)
O((1−

√
κ)t)

Table 1.1: Convergence rates for some typical gradient-descent-type methods. Here κ = µ/L

for µ-strongly convex and L-smooth objective functions, and c > 0 is some numerical constant.

The rates are upper bounds of the optimality gap E[f(x̄t)− f(x∗)] where x̄t is certain weighted

average of x0, x1, . . . , xt (see relevant theorems in the notes). Some results have not been proved

in this set of notes, which we leave as possible exercises for interested readers. You may also

consult relevant literature such as [Bubeck, 2015], [Nesterov, 2018], etc.

We summarize the convergence rate results of gradient-descent-type methods in Table 1.1,

which will be used as centralized benchmarks for comparison with distributed optimization meth-

ods.

Exercise 1.13. Let L > µ > 0 and r > 0, and define

f(x) =

p∑
i=1

g(aTi x− bi) +
µ

2
∥x∥2

for x ∈ Rn, where

g(x) =

1

2
x2e−r/x, x > 0,

0, x ≤ 0,

bi ∈ R for each i, and a1, . . . , ap ∈ Rn are column vectors of a matrix A ∈ Rn×p satisfying

∥A∥2 =
√
L− µ.

1. Show that f is L-smooth and µ-strongly convex.

(Hint: Show that f is twice differentiable and µI ⪯ Hf (x) ⪯ LI, where Hf (x) denotes

the Hessian matrix of f at x.)

2. Numerical experiment: Fix n = 100, p = 50, r = 10−6 and L = 104. Generate each bi
from the normal distribution N (0, 1), and generate A ∈ Rn×p by A =

√
L− µÃ/∥Ã∥2

where each entry of Ã is sampled from N (0, 1). Set x0 = 0, and run the vanilla

gradient descent method

xt+1 = xt − η∇f(xt), η =
2

µ+ L

27

and Nesterov’s accelerated gradient descent method (1.16) to solve the problem

min
x∈Rn

f(x)

for µ = 100, µ = 10 and µ = 1. Plot the values of log10(f(xt) − f(x∗)) versus the

iteration number t for the three cases.

1.6 Basic Graph Theory

Undirected Graph

An undirected graph is an ordered pair G = (V, E) where V is a set of nodes or vertices, and E
is the set of edges whose elements are of the form {i, j} with i, j ∈ V and i ̸= j.3 An element

{i, j} ∈ E represents an undirected edge connecting node i and node j. In this course, we always

assume that V is a finite set, and, without loss of generality, assume V = {1, . . . , n} for some

n ∈ N.

Now let G = (V, E) be an undirected graph. The following are some basic definitions in graph

theory:

• We say that a node j is a neighbor of node i if {i, j} ∈ E . The set of neighbors of node i will

be denoted by Ni, i.e., Ni := {j ∈ V : {i, j} ∈ E}.

• The degree of node i, denoted by deg(i), is the total number of neighbors of node i.

The degree matrix of G, denoted by D, is the n × n diagonal matrix whose i’th diagonal

element is equal to deg(i).

• A path connecting node i and node j is a finite sequence of nodes v1, . . . , vm ∈ V such that

v1 = i, vm = j and {vk, vk+1} ∈ E for each k = 1, . . . ,m− 1. The number m− 1 is called the

length of the path. For a path p = (v1, . . . , vm) in G and an edge e ∈ E , we sometimes use

the notation e ∈ p to mean that e = {vk, vk+1} for some k ∈ {1, . . . ,m− 1}.

Let i, j ∈ V with i ̸= j be arbitrary. The distance from i to j is the minimum value of the

lengths of all paths connecting i and j.

• We say that the undirected graph G is connected, if for any i, j ∈ V with i ̸= j there exists a

path connecting i and j.

When G is connected, we define its diameter as the maximum value of the distances from

any i ∈ V to any j ∈ V with i ̸= j.

• The adjacency matrix A of the graph G is the n× n matrix defined by

Aij =

{
1, if {i, j} ∈ E ,
0, otherwise.

Obviously A is a real symmetric matrix.

3The requirement i ̸= j excludes self-loops.

28

Exercise 1.14. Let G = ({1, . . . , n}, E) be an undirected graph, and let A be its adjan-

cency matrix.

1. Let i, j ∈ {1, . . . , n} be arbitrary. When will the (i, j)’th entry of A2 be positive?

2. Show that there exists a path of length k from node i to node j if and only if the

(i, j)’th entry of Ak is positive.

3. Suppose that n ≥ 2. Show that G is connected if and only if all entries of
∑n−1

k=0 A
k

are positive.

• The Laplacian matrix L of the graph G is defined by

Lij =

deg(i), if i = j,

−1, if i ̸= j and {i, j} ∈ E ,
0, otherwise.

Obviously L is a real symmetric matrix, and we also have L = D −A.

Lemma 1.3. Let λ1 ≥ λ2 ≥ · · · ≥ λn denotes the n eigenvalues of L. The following statements

hold:

1. L is positive semidefinite.

2. λn = 0 and L1 = 0 where 1 is the vector whose entries are all equal to 1.

3. λn−1 > λn if G is connected.

Proof. 1. Let x = (x1, . . . , xn) ∈ Rn be arbitrary. We then have

0 ≤
∑

{i,j}∈E

(xi − xj)
2 =

1

2

n∑
i,j=1

Aij(xi − xj)
2

=
1

2

n∑
i,j=1

Aijx
2
i +

1

2

n∑
i,j=1

Aijx
2
j −

n∑
i,j=1

Aijxixj

=

n∑
i=1

x2
i

n∑
j=1

Aij −
n∑

i,j=1

Aijxixj

=

n∑
i=1

deg(i) · x2
i −

n∑
i,j=1

Aijxixj = xTLx,

which shows that L is positive semidefinite.

2. We have

(L1)i =

n∑
j=1

Lij = deg(i)−
n∑

j=1

Aij = 0.

3. Let x = (x1, . . . , xn) ∈ Rn be any vector such that Lx = 0. We then have xTLx = 0, which,

29

by the calculation in the first part of the proof, implies∑
{i,j}∈E

(xi − xj)
2 = 0,

which further implies xi − xj = 0 whenever {i, j} ∈ E . Now let p, q ∈ V be arbitrary. Since

G is connected, there exists a path p = v1, v2, . . . , vm = q such that {vk, vk+1} ∈ E for each

k = 1, . . . ,m− 1. Therefore we have

xp − xv1 = xv1
− xv2 = · · · = xvn−1

− xq = 0,

which leads to xp − xq = 0. By the arbitrariness of p, q ∈ V, we see that x = c1 for some

c ∈ R. Therefore the eigenvalue λn = 0 has multiplicity 1, and consequently λn−1 > λn.

Exercise 1.15. Let G = ({1, . . . , n}, E) be an undirected graph. Suppose deg(i) > 0 for

all i ∈ V. We define the normalized Laplacian matrix by

L := D−1/2LD−1/2 = I −D−1/2AD−1/2,

where D−1/2 is the diagonal matrix whose i’th diagonal element is 1/
√
deg(i). Show that

1. For any x = (x1, . . . , xn) ∈ Rn, we have

xTLx =
∑

{i,j}∈E

(
xi√
deg(i)

− xj√
deg(j)

)2

.

2. The smallest eigenvalue of L is 0, and has multiplicity 1 if G is connected.

3. Show that the largest eigenvalue of L, denoted by λmax(L), is given by

λmax(L) = sup
x∈Rn\{0}

∑
{i,j}∈E (xi − xj)

2∑
i∈V x2

i · deg(i)
.

Then show that λmax(L) ≤ 2. As a byproduct,a the largest eigenvalue of the (unnor-

malized) Laplacian matrix L is upper bounded by 2maxi∈V deg(i).

aThough it is not really necessary to resort to the normalized Laplacian L to derive an upper bound

of λmax(L) .

Directed Graph

A directed graph (or digraph) is an ordered pair G = (V, E) where V is a set of nodes or vertices,

and E is the set of edges whose elements are ordered pairs (i, j) with i, j ∈ V. An element

(i, j) ∈ E represents a directed edge from i to j. We allow self-loops in digraphs, i.e., (i, i) ∈ E
represents an edge from node i to itself. We shall always assume V is a finite set, and, without

loss of generality, assume V = {1, . . . , n} for some n ∈ N.

Now let G = (V, E) be a directed graph.

30

• We say that a node j is an in-neighbor of node i if (j, i) ∈ E . A node k is an out-neighbor of

node i if (i, k) ∈ E .

• The in-degree and out-degree of a node i, denoted by degin(i) and degout(i), are the numbers

of in-neighbors and out-neighbors of i, respectively.

• A path connecting node i and node j is a finite sequence of nodes v1, . . . , vm ∈ V such that

v1 = i, vm = j and (vk, vk+1) ∈ E for each k = 1, . . . ,m− 1. For a path p = (v1, . . . , vm) in

G and an edge e ∈ E , We sometimes use the notation e ∈ p to mean that e = (vk, vk+1) for

some k ∈ {1, . . . ,m− 1}.

• The graph G is called strongly connected if for any pair of nodes i, j ∈ V there exists a path

from i to j.

• The adjacency matrix A of the graph G is the n× n matrix defined by

Aij =

{
1, if (i, j) ∈ E ,
0, otherwise.

It can be seen that the entries of A1 are the out-degrees of each node in G, while AT1 are

the in-degrees of each node in G.

For digraphs, the adjancency matrix is in general not symmetric. When A is symmetric,

we have (i, j) ∈ E if and only if (j, i) ∈ E , and in this case we say that the digraph G is

undirected. It’s not hard to see that for an undirected digraph G = (V, E), there exists a

digraph G′ = (V, E ′) such that {i, j} ∈ E if and only if i ̸= j and (i, j) ∈ E , and the adjacency

matrix A′ of G′ is equal to A expect possibly for diagonal entries.

1.7 Basic Setups of Distributed Optimization

Broadly speaking, the term distributed optimization may refer to any technique of solving opti-

mization problems via a group of agents connected by a communication network. Each agent is

able to carry out certain computing tasks on its own, and is also able to exchange information

with its neighbors in the communication network whenever necessary. In this course, we shall

only discuss discrete-time algorithms, i.e., the time domain is discretized, and the optimization

algorithms are specified by iterations in discrete-time.

Among all the possible configurations of agents and communication networks for distributed

optimization, there are two basic setups that are prevalent in the research area of distributed

optimization:

1. The server-worker setup: In this setup, there is one particular agent, which we call the server,

that is responsible for collecting data and distributing tasks to other agents. Other agents

are called workers, and each worker only communicates with the server in the communication

network. Consequently, the communication network has a star topology, where the server is

at the center node and the workers are at the surrounding nodes.

2. The peer-to-peer setup: In this setup, each agent plays roughly the same role in the opti-

mization procedure, and there is no central coordinator (or an external central coordinator

31

can broadcast to the agents but receives information from the agents very infrequently). The

topology of the communication network can be arbitrary (and even time-varying), as long as

it is “sufficiently connected” so that any piece of information can be spread to all nodes in

the network eventually.

In this course, we will mainly focus on the peer-to-peer setup, and will particularly study the

so-called consensus optimization problems. At the end of the course, we will briefly introduce

federated learning from the perspective of distributed optimization under the server-worker setup.

Notes on References

[Boyd and Vandenberghe, 2004] gives a friendly introduction to the general theory of convex

analysis and optimization. Readers with sufficient mathematical maturity may also consult the

classic book [Rockafellar, 1970] on convex analysis. [Nesterov, 2018] and [Bubeck, 2015] present

convergence rate/complexity analysis of fundamental convex optimization algorithms. The test

case in Exercise 1.13 is adapted from [Van Scoy et al., 2017]; this paper also proposes the

triple momentum method that achieves faster convergence rate than the standard Nesterov’s

accelerated GD for strongly convex functions. The materials of basic graph theory are mostly

adopted from [Bullo, 2022].

1.A Proof of Theorem 1.6

The proof provided here is mostly adapted from [Bubeck, 2015]. Denote gt = G(xt; ξt). We still

start from (1.10):

f(xt) +
1

2ηt
∥xt+1 − x∗∥2

= f(xt) + ⟨gt, x∗ − xt⟩+
1

2ηt

(
∥xt − x∗∥2 + 2ηt⟨gt, xt − xt+1⟩ − ∥xt+1 − xt∥2

)
.

(1.10)

Note that, since α ≥ µ, f(x)− α
2 ∥x− x∗∥2 is convex, and so we have

E[f(xt) + ⟨gt, x∗ − xt⟩|xt]

= f(xt) + ⟨∇f(xt), x
∗ − xt⟩

= f(xt)−
α

2
∥xt − x∗∥2 + ⟨∇f(xt)− α(xt − x∗), x∗ − xt⟩ −

α

2
∥xt − x∗∥2

≤ f(x∗)− α

2
∥xt − x∗∥2.

Then, by the L-smoothness of f , we have

f(xt+1) ≤ f(xt) + ⟨∇f(xt), xt+1 − xt⟩+
L

2
∥xt+1 − xt∥2.

By adding this inequality with (1.10) and taking the expectation conditioned on xt, we get

E
[
f(xt+1)− f(x∗) +

1

2ηt
∥xt+1 − x∗∥2

∣∣∣∣ xt

]

32

≤
(

1

2ηt
− α

2

)
∥xt − x∗∥2 + E[⟨gt −∇f(xt), xt − xt+1⟩|xt] +

(
L

2
− 1

2ηt

)
E
[
∥xt+1 − xt∥2

∣∣xt

]
≤
(

1

2ηt
− α

2

)
∥xt − x∗∥2 + ηtE

[
∥gt −∇f(xt)∥2

∣∣xt

]
+

(
L

2
− 1

4ηt

)
E
[
∥xt+1 − xt∥2

∣∣xt

]
≤
(

1

2ηt
− α

2

)
∥xt − x∗∥2 + ηtσ

2,

where in the second step we used ⟨gt−∇f(xt), xt−xt+1⟩ ≤ ηt∥gt−∇f(xt)∥2+∥xt−xt+1∥2/(4ηt),
and the last step follows from ηt ≤ 1/(2L). By multiplying the above inequality with t+ t0 − 1,

plugging in ηt =
2

α(t+t0)
and taking the total expectation, we get

(t+ t0 − 1)E[(f(xt+1)− f(x∗))]

≤ 2σ2

α
+

α

4

(
(t+ t0 − 1)(t+ t0 − 2)E

[
∥xt − x∗∥2

]
− (t+ t0)(t+ t0 − 1)E

[
∥xt+1 − x∗∥2

])
.

We can now take the telescoping sum and get

2

t(t+ 2t0 − 3)

t∑
τ=1

E[(τ + t0 − 2)(f(xτ)− f(x∗))] ≤ 4σ2

α(t+ 2t0 − 3)
+

α(t0 − 1)(t0 − 2)∥x0 − x∗∥2

2t(t+ 2t0 − 3)
.

The proof will be completed by applying Jensen’s inequality.

Bibliography

[Beck and Teboulle, 2003] Beck, A. and Teboulle, M. (2003). Mirror descent and nonlinear pro-

jected subgradient methods for convex optimization. Operations Research Letters, 31(3):167–

175.

[Boyd and Vandenberghe, 2004] Boyd, S. and Vandenberghe, L. (2004). Convex Optimization.

Cambridge University Press.

[Bubeck, 2015] Bubeck, S. (2015). Convex optimization: Algorithms and complexity. Founda-

tions and Trends® in Machine Learning, 8(3-4):231–357.

[Bullo, 2022] Bullo, F. (2022). Lectures on Network Systems. Kindle Direct Publishing, 1.6

edition.

[Horn and Johnson, 2013] Horn, R. A. and Johnson, C. R. (2013). Matrix Analysis. Cambridge

University Press, 2nd edition.

[Lax, 2007] Lax, P. D. (2007). Linear Algebra and Its Applications. John Wiley & Sons, 2

edition.

[Nesterov, 2018] Nesterov, Y. (2018). Lectures on Convex Optimization. Springer, 2 edition.

[Nocedal and Wright, 2006] Nocedal, J. and Wright, S. J. (2006). Numerical Optimization.

Springer, 2 edition.

33

[Parikh and Boyd, 2014] Parikh, N. and Boyd, S. (2014). Proximal algorithms. Foundations and

trends® in Optimization, 1(3):127–239.

[Rockafellar, 1970] Rockafellar, R. T. (1970). Convex Analysis. Princeton University Press.

[Rudin, 1976] Rudin, W. (1976). Principles of Mathematical Analysis. McGraw-Hill, 3 edition.

[Van Scoy et al., 2017] Van Scoy, B., Freeman, R. A., and Lynch, K. M. (2017). The fastest

known globally convergent first-order method for minimizing strongly convex functions. IEEE

Control Systems Letters, 2(1):49–54.

34

Chapter 2

Consensus Optimization: Basics

2.1 Formulation and Applications

We first introduce the basic formulation of consensus optimization.

Consider a group of N agents, which are numbered by i = 1, 2, . . . , N . We shall always

assume that the number of agents N is greater than or equal to 2. The group of agents are

connected by a communication network, which allows them to exchange information during the

optimization procedure. Each agent is associated with a local cost function fi : Rd → R, and
the goal is to solve the following optimization problem:

min
x∈Rd

1

N

N∑
i=1

fi(x), (2.1)

or equivalently,

min
x1,...,xN∈Rd

1

N

N∑
i=1

fi(xi).

The word “consensus” comes from the requirement that each agent should arrive at the same

decision variable. We shall call the function

f(x) :=
1

N

N∑
i=1

fi(x)

the global objective function of the consensus optimization problem.

In consensus optimization, it is assumed that each agent i can obtain information (e.g, func-

tion values, gradients) on its local cost function fi directly, but information on the local cost

functions of other agents can only be obtained via exchanging information in the network.1 Fur-

thermore, the time needed to transmit information from one agent to any of its neighbors is not

negligible.

1This restriction does not mean that the formulation of consensus optimization cannot be applied to problems

where some agents also have direct access to local cost functions of some other agents.

35

We now present some applications that can be modeled as consensus optimization problems.

Distributed learning. Suppose there are N agents, each of which has collected a set of labeled

data Di for supervised learning. Let ℓ(θ;x, y) denote the loss function that quantifies how the

model parameterized by θ ∈ Rd fits the single pair of data (x, y). Let

fi(θ) =
∑

(x,y)∈Di

ℓ(θ;x, y).

The empirical risk minimization problem for learning a model is can then be formulated as

min
θ∈Rd

1

N

N∑
i=1

fi(θ).

Assume that, due to privacy concerns, the agents are not willing to share their data to other

agents or upload their data to a central server, and need to learn the model by localized coor-

dination via a communication network. Then we see that the distributed learning problem fits

the formulation of consensus optimization.

Distributed state estimation. Consider a moving target whose state follows the linear dy-

namical system

xt+1 = Atxt + wt,

where (wt)t≥0 is a sequence of i.i.d. process noises that follow the Gaussian distribution N (0,W)

for some positive definite covariance matrix W . A group of N drones are connected by a com-

munication network, and each drone i is equipped with a sensor that observes the moving target

according to

yi,t = Ci,txt + vi,t

whenever the drone is sufficiently close to the target. Here (vi,t)t≥0 is a sequence of i.i.d. mea-

surement noises following the Gaussian distribution N (0, Vi) for some positive definite Vi for

each i = 1, . . . , N .

Now suppose the target moves from t = 0 to t = T , and each drone i observes the moving

target for t ∈ Ti ⊆ {0, . . . , T}, and collects its observed data (yi,t : t ∈ Ti). Assuming that At,

W and the distribution of the initial state x0 ∼ N (x̄0, P0) are known to all drones, and that

each drone i also knows its Ci,t and Vi. The goal for the group of drones is to estimate the

trajectory (x0, . . . , xT) of the moving target using their collected measurement data, by solving

the following optimization problem:

min
x̂0,...,x̂T

∥x̂0 − x̄0∥2P−1
0

+

T∑
t=1

∥x̂t −Atx̂t−1∥2W−1 +

N∑
i=1

∑
t∈Ti

∥yi,t − Ci,tx̂t∥2V −1 .

A solution to the above optimization problem is the maximum a posteriori (MAP) estimator of

the target’s state. By letting

fi(x̂0, . . . , x̂T) = ∥x̂0 − x̄0∥2P−1
0

+

T∑
t=1

∥x̂t −Atx̂t−1∥2W−1 +N
∑
t∈Ti

∥yi,t − Ci,tx̂t∥2V −1 ,

36

we see that the distributed state estimation problem satisfies the formulation of consensus opti-

mization.

Distributed energy resource coordination. Consider the situation where a group of N

distributed generators need to determine their power generations to meet the total demand

while also minimizing the total generation cost. Mathematically, this problem can be formulated

as

min
p1,...,pi∈R

N∑
i=1

Ci(pi)

s.t.

N∑
i=1

pi = D,

pi,min ≤ pi ≤ pi,max.

Here each Ci : [0,+∞) → R represents the generation cost of the ith distributed generator,

which we assume is strictly convex; D is the total demand, and
∑

i pi = D is the power balance

constraint; pi,min and pi,max are the lower and upper limits of the power generation of the i’th

generator.

We shall assume that Slater’s condition holds for this problem. Then we can formulate the

dual problem:

max
λ∈R

N∑
i=1

ϕi(λ), (2.2)

where

ϕi(λ) = min
pi∈[pi,min,pi,max]

Ci(pi)− λ(pi −D/N).

It’s not hard to see that (2.2) satisfies the formulation of consensus optimization after rescaling

and flipping the sign of the global objective.

Distributed routing control. Suppose there are N agents connected by a communication

network. Each agent i is responsible for sending an amount of a certain type of commodity from

one place (the source) to another place (the destination). We use a directed graph Gf = (Vf , Ef)
to model the network of traffic, so that the sources si and the destinations ti are all elements

of Vf , and each route that can be used by agent i for sending its commodity is a path in the

network Gf that connects si and vi. Note that paths used by different agents are allowed to

share edges in the network, so that each edge may be used to carry different types and amounts

of commodities. We let Pi denote the set of paths that can be used by agent i. For agent i,

the total traffic incurred for sending its commodity is given by Qi > 0, and each agent needs

to allocate this amount of traffic among the paths in Pi. We let xi,p denote the proportion of

traffic in Qi allocated to the path p ∈ Pi. We let x denote the vector that concatenates all xi,p

for p ∈ Pi and i = 1, . . . , N .

37

After each agent i determines its associated xi,p for each p ∈ Pi, each edge e ∈ E will naturally
carry a certain amount of traffic given by

qe(x) =

n∑
i=1

∑
p:p∈Pi and e∈p

xi,pQi,

i.e., we sum over all traffic that will go through the edge e. The traffic qe(x) will incur congestion

cost for each unit of traffic along edge e, and it is given by ce(qe(x)) for some function ce :

[0,+∞)→ R. The local cost for agent i is then given by

fi(x) =
∑
p∈Pi

(
xi,pQi ·

∑
e∈p

ce(qe(x))

)
.

We emphasize that each agent’s local cost may be affected by other agents’ allocations of traffic,

which introduces coupling among agents’ decisions. Our goal is to find the optimal allocation of

traffic that minimizes the global cost:

min
x

1

N

N∑
i=1

fi(x),

s.t. x ∈
N⋂
i=1

Xi

where

Xi =
{
x :
∑

p∈Pi

xi,p = 1, x ≥ 0
}
.

Now we assume that the mapping x 7→ ce(qe(x)) is known to agent i as long as there exists p ∈ Pi

such that e ∈ p. Then this distributed routing control problem almost fits the formulation given

by (2.1) except that it imposes local constraints x ∈ Xi for each i.

Exercise 2.1. Consider the distributed routing control problem. Show that the global

objective function f(x) = 1
N

∑N
i=1 fi(x) satisfies

f(x) =
1

N

∑
e∈Ef

qe(x) · ce(qe(x))

Exercise 2.2. Suppose there is a light source at location z ∈ R3, and around this light

source there is a group of N sensors connected by a communication network. Each sensor

i is located at xi ∈ R3, and its measurement data yi is given by the model

yi =
1

∥xi − z∥βi
+ αi + wi.

Here αi ≥ 0 and βi > 0 are constants known to agent i; wi is a random measurement

38

noise following the Gaussian distribution N (0, σ2
i), where σi > 0 is also known to agent i.

We assume that noises for different sensors are independent. We also assume that sensor

i knows its location xi.

Now let each sensor i take one measurement and obtain yi for each i = 1, . . . , N .

Formulate the problem of finding the maximum likelihood estimator (MLE) of the light

source’s location z as a consensus optimization problem, and specify each local objective

function fi.

Exercise 2.3. Suppose there are 3 agents, whose local objective functions are respectively

h1(x1, x2), h2(x2, x3, x4) and h3(x4, x5). The goal is to solve the following optimization

problem:

min
xi, i=1,...,5

h1(x1, x2) + h2(x2, x3, x4) + h3(x4, x5)

1. By introducing the variable x = (x1, x2, x3, x4, x5), reformulate the above problem as

a consensus optimization problem with decision variable x. You may assume that each

agent has sufficient information about the mapping from x to its own local objective

value.

2. Now suppose h1, h2 and h3 are continuously differentiable and (jointly) strongly con-

vex. We reformulate the original problem as

min
xi, i=1,...,5

y2,y4

h1(x1, x2) + h2(y2, x3, x4) + h3(y4, x5)

s.t. x2 = y2,

x4 = y4.

Find its dual problem and formulate the dual problem as a consensus optimization

problem.

2.2 Consensus Method for Distributed Averaging

In this section, we present the consensus method for distributed averaging.

Suppose there is a group of N agents connected by a communication network. For simplicity,

the communication network is assumed to be static and bi-directional, and its topology is given

by the undirected graph G = ({1, . . . , N}, E) which is connected. Each agent is associated with

a vector xi ∈ Rd, and the goal is to compute the average x̄ = 1
N

∑N
i=1 xi. Each agent is only

allowed to exchange information with its neighbors in the communication network.

A natural idea for the distributed averaging problem is as follows: Each agent iteratively takes

some weighted average of all the vectors the agent can collect, i.e., the vector stored by itself

and the vectors collected from its neighbors in the communication network. Mathematically, this

39

procedure can be written as

xi(t+ 1) =

N∑
j=1

Wij xj(t) (2.3)

with the initialization xi(0) = xi. The weights Wij should satisfy the following conditions:

1. The weights should be compatible with the topology of the communication network, i.e.,

Wij = 0 whenever i ̸= j and {i, j} /∈ E .

2.
∑N

j=1 Wij = 1 for all i.

3.
∑N

i=1 Wij = 1 for all j.

The second condition ensures that, if the initial iterates have already achieved consensus, i.e.,

xi(0) = xj(0) for all i, j, then xi(t) remains unchanged for all t ≥ 1. The third condition ensures

that, the mean of the vectors xi(t), i = 1, . . . , N is preserved through the iterations, which can

be seen from

1

N

N∑
i=1

xi(t+ 1) =
1

N

N∑
i=1

N∑
j=1

Wijxj(t) =
1

N

N∑
j=1

xj(t)

N∑
i=1

Wij =
1

N

N∑
j=1

xj(t).

Note that (2.3) can also be written as

xi(t+ 1) = xi(t) +
∑
j∈Ni

Wij(xj(t)− xi(t)).

The iterations (2.3) give the consensus method for distributed averaging.

Remark 2.1. In order for the agents to implement (2.3) precisely, all agents must complete their

required communication and computation for one step of (2.3) before they can proceed to the

next iteration. Such methods are called synchronous methods. Some drawbacks of synchronized

methods are as follows:

1. To run synchronous methods, it is usually required that all agents’ local clocks are synchro-

nized so that they can update at the same time. However, synchronization of local clocks

can be hard for some communication networks.

2. Synchronous methods require each transmission of information to be perfect. This require-

ment is again hard to achieve for some communication networks.

On the other hand, synchronous methods are in general easier to analyze, and serve as bases for

the design of most asynchronous algorithms.

We shall introduce the weight matrix W ∈ RN×N whose (i, j)’th entry is just Wij .
2 The

second and the third conditions are then equivalent to that 1 is an eigenvector of W and WT

with eigenvalue 1.

2Other terminologies, such as consensus matrix, mixing matrix, gossip matrix, etc., have also been used in the

literature.

40

The three conditions provided previously are not sufficient for establishing convergence of

the iterations (2.3) to the average x̄. To study the convergence, we first introduce the notation

X(t) =

— x1(t)

T —
...

— xN (t)T —

 ∈ RN×d.

Then the iterations (2.3) can be equivalently written as

X(t+ 1) = WX(t). (2.4)

We then note that

x̄T =
1

N
1TX(0) =

1

N
1TX(t),

where we used the fact that the mean of xi(t) remains unchanged. Consequently, the deviation

from the mean can be represented by

E(t) =

(x1(t)− x̄)T

...

(xN (t)− x̄)T

 = X(t)− 1x̄T =

(
I − 1

N
11T

)
X(t).

We now look at how the deviation from the mean evolves:

E(t+ 1) =

(
I − 1

N
11T

)
WX(t)

=

(
W − 1

N
11TW

)
X(t)

=

(
W − 1

N
11T

)
X(t),

while we also notice that(
W − 1

N
11T

)(
I − 1

N
11T

)
= W − 1

N
11T.

Therefore

E(t+ 1) =

(
W − 1

N
11T

)
E(t).

We now arrive at the following theorem:

Theorem 2.1. Let W ∈ RN×N be a weight matrix satisfying W1 = WT1 = 1. If

ρ

(
W − 1

N
11T

)
< 1,

then the iterates of the consensus method (2.3) satisfy

lim
t→∞

∥xi(t)− x̄∥ = 0.

41

Furthermore, if

σ :=

∥∥∥∥W − 1

N
11T

∥∥∥∥
2

< 1,

then

1

N

N∑
i=1

∥xi(t)− x̄∥2 ≤ σ2t · 1
N

N∑
i=1

∥xi(0)− x̄∥2 = O(σ2t)

As a corollary, we have the following result on the iteration complexity of the consensus

method for distributed averaging.

Corollary 2.1. Suppose the weight matrix W satisfies W1 = WT1 = 1 and

σ =

∥∥∥∥W − 1

N
11T

∥∥∥∥
2

< 1.

Let ϵ > 0 be arbitrary. Then the number of iterations T needed to achieve

1

N

N∑
i=1

∥xi(t)− x̄∥2 ≤ ϵ2

satisfies

T = O

(
ln(1/ϵ)

ln(1/σ)

)
.

Exercise 2.4. Suppose W ∈ RN×N satisfies Wu = u and WTv = v for some u, v ∈
RN\{0} with vTu ̸= 0. Show that(

W − uvT

vTu

)k

= W k − uvT

vTu
.

Then show that

lim
k→∞

W k =
uvT

vTu

if and only if ρ
(
W − uvT

vTu

)
< 1.

Exercise 2.5. Suppose W ∈ RN×N satisfies Wu = u and WTv = v for some u, v ∈
RN\{0}. Prove that

vTu ̸= 0 and ρ

(
W − uvT

vTu

)
< 1

if and only if 1 is a simple eigenvalue of W , and all other eigenvalues have magnitudes

strictly less than 1.

42

Exercise 2.6. Let W ∈ RN×N satisfy W1 = WT1 = 1 and ρ
(
W − 1

N 11T
)
< 1. We

define the asymptotic convergence factor as

rasym(W) := sup
x∈RN\ span{1}

lim
t→∞

(∥∥W tx− 1
N 11Tx

∥∥∥∥x− 1
N 11Tx

∥∥
)1/t

,

and the per-step convergence factor as

rstep(W) := sup
x∈RN\ span{1}

∥∥Wx− 1
N 11Tx

∥∥∥∥x− 1
N 11Tx

∥∥ .

Prove that

rasym(W) = ρ

(
W − 1

N
11T

)
and rstep(W) =

∥∥∥∥W − 1

N
11T

∥∥∥∥
2

.

2.3 How to Construct the Weight Matrix

In this section, we present some approaches for constructing a weight matrixW that is compatible

with the topology of the network and satisfies the conditions in Theorem 2.1.

Laplacian-Based Construction

We first provide a construction based on the Laplacian matrix.

Proposition 2.1. Let G = ({1, . . . , N}, E) be a connected undirected graph, and let L be the

Laplacian matrix of G. Let

W = I − αL,

where α is any real number satisfying α < 2
λmax(L) . Then

1. W is compatible with the graph G;

2. W1 = WT1 = 1;

3.
∥∥W − 1

N 11T
∥∥
2
< 1.

Proof. By the definition of the Laplacian matrix, it’s evident that W is compatible with the

graph G. Then, W1 = WT1 = 1 follows from L1 = 0 and that W is real symmetric. Finally,

since W is real symmetric and W1 = 1, we see that
∥∥W − 1

N 11T
∥∥
2
< 1 as long as all eigenvalues

of W other than 1 lie in (−1, 1). Let λ1 ≥ · · · ≥ λN−1 > λN = 0 be the N eigenvalues of L.

Then all eigenvalues of W other than 1 are given by 1−αλi for i = 1, . . . , N − 1. The condition

α < 2
λ1

then implies

max
i=1,...,N−1

|1− αλi| = max {1− αλN−1, αλ1 − 1} < 1,

which completes the proof.

43

Remark 2.2. By Exercise 1.15, we have

λmax(L) ≤ 2 max
i=1,...,N

deg(i),

which can be used to choose α that satisfies α < 2
λmax(L) when computing the spectrum of L is

difficult.

Exercise 2.7. Construct an example where the weight matrixW satisfiesW1 = WT1 = 1

and
∥∥W − 1

N 11T
∥∥
2
< 1 but at least one of its entries is negative. The example can be

constructed numerically.

(Hint: The diagonal elements of I − αL are given by 1− α deg(i), which can be negative

if α > 1/ deg(i) for some i.)

Perron–Frobenius Theorem and the Metropolis Weights

We then discuss how to construct the weight matrix based on the Perron–Frobenius theorem.

Theorem 2.2 (Perron–Frobenius). Let N ≥ 2, and let P ∈ RN×N have nonnegative entries.

Let G = ({1, . . . , N}, E) be the directed graph whose adjacency matrix is given by

Aij =

{
1, if Pij > 0,

0, if Pij = 0.

Suppose the following conditions hold:

1. G is strongly connected.

2. For each i ∈ {1, . . . , N}, the greatest common divisor of all lengths of paths in G that both

start and end at node i is equal to 1.

Then

1. ρ(P) is a simple eigenvalue of P and is strictly positive.

2. There is a unique u ∈ RN such that Pu = ρ(P)u and 1Tu = 1; this vector has strictly positive

entries.

3. All eigenvalues of P other than ρ(P) have magnitudes strictly less than ρ(P).

4. No eigenvectors of P except positive multiples of u have entries that are all nonnegative.

As a corollary, we have the following result.

Proposition 2.2. Let G = ({1, . . . , N}, E) be a connected undirected graph, and let W ∈ RN×N

satisfy the following conditions:

1. W is a doubly stochastic matrix, i.e., Wij ≥ 0 for all i, j and W1 = WT1 = 1.

2. Wii > 0 for all i.

44

3. For i ̸= j, we have Wij > 0 if and only if i and j are neighbors in G.

Then ∥∥∥∥W − 1

N
11T

∥∥∥∥
2

< 1.

Proof. Let P = WTW . It can be seen that P is positive semidefinite and P1 = 1, and all

entries of P are nonnegative. Moreover,

Pii =

N∑
k=1

WkiWki ≥W 2
ii > 0,

and for i ̸= j with {i, j} ∈ E , we have

Pij =

N∑
k=1

WkiWkj ≥WiiWij > 0.

Therefore, if we let A ∈ RN×N be given by

Aij =

{
1, if Pij > 0,

0, if Pij = 0,

and let G′ = ({1, . . . , N}, E ′) be the directed graph whose adjacency matrix is given by A, we see

that (i, j) ∈ E ′ whenever i = j or {i, j} ∈ E . Since the (undirected) graph G = ({1, . . . , N}, E) is
connected, we see that the (directed) graph G′ is strongly connected. Furthermore, (i, i) ∈ E ′ for
all i = 1, . . . , N implies that the greatest common divisor of all the lengths of paths in G′ that
start and end at node i is equal to 1 for any i = 1, . . . , N . We can now apply the Perron–Frobenius

theorem to conclude the following:

1. ρ(P) = 1.

2. 1 is a simple eigenvalue of P , with eigenvector 1 being an eigenvector.

3. All eigenvalues of P other than 1 are strictly less than 1.

Consequently, all eigenvalues of P − 1
N 11T lie in [0, 1). Finaly, we note that(

W − 1

N
11T

)T(
W − 1

N
11T

)
= P − 1

N
11T,

and the proof will be completed by using the fact that the spectral norm of W − 1
N 11T is equal

to the square root of the maximum eigenvalue of
(
W − 1

N 11T
)T(

W − 1
N 11T

)
.

Proposition 2.2 frees us from checking the eigenvalues of the weight matrix. We now provide

one explicit example of weight matrices that can be used for the consensus method.

Example 2.1 (Metropolis weights). Let G = ({1, . . . , N}, E) be a connected undirected graph,

and let

Wij =

1

max{deg(i),deg(j)}+ ϵ
, if {i, j} ∈ E ,

0, if i ̸= j and {i, j} /∈ E ,

1−
∑

k ̸=i
Wik, if i = j,

45

where ϵ is an arbitrary positive real number. It’s not hard to check thatW satisfies the conditions

in Proposition 2.2, and therefore
∥∥W − 1

N 11T
∥∥
2
< 1. This weight matrix is called Metropolis

weight matrix.

Exercise 2.8. Let N ≥ 3. Find the Metropolis weight matrix W and its corresponding

σ :=
∥∥W − 1

N 11T
∥∥
2
for the following graphs:

1. A complete graph with N nodes.

2. A loop with N nodes, i.e., G = ({1, . . . , N}, E) with {i, j} ∈ E if and only if |i− j| = 1

or i = 1, j = N or i = N, j = 1.

(Hint: To compute
∥∥W − 1

N 11T
∥∥
2
, note that W is real symmetric and circulant, so

that its eigenvalues can be found by the discrete Fourier transform. By definition, an

n× n circulant matrix takes the form[
v Tv Tv2 · · ·Tvn−1

]
where v ∈ Rn is an arbitrary vector and T : Rn → Rn is the operator satisfying

(Tv)1 = vn and (Tv)i = vi−1 for i = 2, 3, . . . , n.)

3. (Optional) A 2D grid on a torus with N nodes where N = K2 for some positive integer

K. In other words, V = {(i, j) : i, j ∈ {1, . . . ,K}}, and {(i1, j1), (i2, j2)} ∈ E if and

only if one of the following is satisfied:

• i1 = i2 and |j1 − j2| = 1;

• j1 = j2 and |i1 − i2| = 1;

• i1 = i2, and either j1 = 1, j2 = K or j1 = K, j2 = 1;

• j1 = j2, and either i1 = 1, i2 = K or i1 = K, i2 = 1.

Find the leading terms of the Taylor expansions of ln(1/σ) in 1/N for the above graphs.

Finding Optimal Per-Step Convergence Factor

Let us suppose that the topology of the communication network G = ({1, . . . , N}, E) is known.

We now study how to find the optimal W that minimizes the per-step convergence factor

σ =

∥∥∥∥W − 1

N
11T

∥∥∥∥
2

.

We use the following result: A matrix A satisfies ∥A∥2 ≤ s if and only if[
sI A

AT sI

]
⪰ 0.

46

This result can be proved by using Schur complement. Then we can formulate the following

optimization problem:

min
W∈RN×N ,s∈R

s

s.t. Wij = 0, ∀i, j such that i ̸= j and {i, j} /∈ E ,
W1 = 1, WT1 = 1,[

sI W − 1
N 11T

WT − 1
N 11T sI

]
⪰ 0.

(2.5)

It’s not hard to see that the above optimization problem is a semidefinite program (SDP).

There are situations where a symmetric W might be favorable. Note that for real symmetric

matrix A, we have ∥A∥2 ≤ s if and only if −sI ⪯ A ⪯ sI. We can therefore formulate the

following optimization problem for finding the optimal symmetric W :

min
W∈Rn×n,s∈R

s

s.t. Wij = 0, ∀i, j such that i ̸= j and {i, j} /∈ E ,
W1 = 1, WT = W,

− sI ⪯W − 1

N
11T ⪯ sI.

(2.6)

This problem is also an SDP.

The SDPs formulated above can be numerically solved by existing SDP solvers or by interior-

point methods tailored for the particular structures of the SDPs, when the graph G has small

to medium scales. For very large networks, solving these SDPs can be prohibitive. We refer

to [Xiao and Boyd, 2004] and relevant literature for more details and discussions.

Exercise 2.9. Consider the following graph:

Find
∥∥W − 1

N 11T
∥∥
2
of the following weight matrices for the graph:

1. The Metropolis weight matrix with ϵ = 1.

2. W = I − αL, with α = 1/maxi deg(i).

3. W = I − αL, where α is chosen to minimize
∥∥I − αL− 1

N 11T
∥∥
2
.

4. The optimal solution to (2.5).

47

5. The optimal solution to (2.6).

Exercise 2.10. Let W be a symmetric and positive semidefinite weight matrix such that

W1 = 1 and σ :=
∥∥W − 1

N 11T
∥∥
2
< 1. We denote A := I −W .

1. Show that A is positive semidefinite, A1 = 0, and 0 is a simple eigenvalue of A.

2. Consider the iteration

z(t+ 1) = Wz(t), x(0) ∈ RN .

Show that (z(t))t≥0 coincides with the sequence generated by the gradient descent

method for minimizing 1
2z

TAz. What is the corresponding step size?

3. Let U⊥ ∈ RN×(N−1) be a matrix satisfying 1TU⊥ = 0 and UT
⊥U⊥ = I. Consider the

matrix

Ã := UT
⊥AU⊥.

Show that the function f(z) = 1
2z

TÃz is (1− σ)-strongly convex and 1-smooth.

Furthermore, let z̃(t) := UT
⊥z(t). Show that ∥z̃(t)∥ = ∥(I − 1

N 11T)z(t)∥, and that

(z̃(t))t≥0 coincides with the sequence generated by the gradient descent method for

minimizing 1
2 z̃

TÃz̃.

2.4 Extension to Directed Networks

We now consider the situation where the communication network is not bidirectional. As a

consequence, we need to model the network by a digraph G = ({1, . . . , N}, E). Without loss of

generality we assume that G does not have self-loops.

It’s not hard to see that, as long as there exists a weight matrixW ∈ RN×N that is compatible

with the digraph G (i.e., Wij = 0 whenever (j, i) /∈ E) and satisfies W1 = WT1 = 1 and

ρ
(
W− 1

N 11T
)
< 1, the previously presented theory can still be applied with minor modifications.

However, as indicated by [Gharesifard and Cortés, 2010], it can be difficult or even impossible

to find a weight matrix that is compatible with the digraph and at the same time satisfying

W1 = WT1 = 1.

To deal with digraphs, we start from the following lemma that considers weight matrices that

only satisfy WT1 = 1:

Lemma 2.1. Let W ∈ RN×N be a weight matrix satisfying WT1 = 1, and suppose 1 is a

simple eigenvalue of W . Let ν ∈ RN be an eigenvector of W with eigenvalue 1. Then

1. 1Tν ̸= 0.

48

2. Let Y(t) ∈ RN×d be generated iteratively by Y(t+ 1) = WY(t). Define

E(t) = Y(t)− ν1T

1Tν
Y(0).

Then 1TY(t) = 1TY(0) and

E(t+ 1) =

(
W − ν1T

1Tν

)
E(t).

Proof. 1. Let 1, λ1, . . . , λp be the distinct eigenvalues of W . We have

(W − λiI)
Nν = (1− λi)

Nν

for i = 1, . . . , p. Then note that, for any i = 1, . . . , p and u ∈ null(WT − λiI)
N , we have

uT(W − λiI)
N = 0, and so

(1− λi)
NuTν = uT(W − λiI)

Nν = 0,

which implies that uTν = 0. Since 1 is a simple eigenvalue of W , by the spectral theorem,

we have

CN = span{1} ⊕ null(WT − λ1I)
N ⊕ · · · ⊕ null(WT − λpI)

N .

Therefore, 1Tν = 0 would imply that xTν = 0 for all x ∈ CN , which contradicts ν ̸= 0. Thus

1Tν ̸= 0.

2. The proof of the second part only involves straightforward algebraic calculations, which we

leave as an exercise.

Exercise 2.11. Prove the second part of Lemma 2.1.

We see that, as long as W satisfies the conditions stated in Lemma 2.1 as well as ρ(W −
ν1T/1Tν) < 1, then for the sequence generated by the iterations

yi(t+ 1) =

N∑
j=1

Wijyj(t), yi(0) = xi,

we have

lim
t→∞

yi(t) =
Nνi
1Tν

· x̄ =: yi(∞),

where x̄ = 1
N

∑N
i=1 xi as usual. This equality means that agent i can recover x̄ from yi(∞) if it

knows the quantity Nνi/1
Tν. But obtaining Nνi/1

Tν is not a difficult task: We can introduce

auxiliary variables zi(t) ∈ R for each agent i, which are generated by the iterations

zi(t+ 1) =

N∑
j=1

Wijzj(t), zi(0) = 1.

49

Then

lim
t→∞

zi(t) =
Nνi
1Tν

.

We can now summarize the above derivations and propose the following iterations for distributed

averaging over digraphs:

yi(t+ 1) =

N∑
j=1

Wijyj(t), yi(0) = xi,

zi(t+ 1) =

N∑
j=1

Wijzj(t), zi(0) = 1,

xi(t) =
yi(t)

zi(t)
.

(2.7)

Theorem 2.3. Suppose W ∈ RN×N satisfies WT1 = 1, and 1 is a simple eigenvalue of W .

Let x(t) be generated by the iterations (2.7). Then

lim
t→∞

xi(t) =
1

N

N∑
i=1

xi

as long as all eigenvalues of W other than 1 have magnitudes strictly less than 1.

The final step is then to construct a weight matrix W that satisfies the conditions in Theo-

rem 2.3. This is handled by the following proposition:

Proposition 2.3. Suppose the digraph G is strongly connected and does not have self-loops.

Let

Wij =

1

1 + degout(j)
, i = j or (j, i) ∈ E ,

0, i ̸= j and (j, i) /∈ E .
(2.8)

Then,

1. W is compatible with the digraph G;

2. WT1 = 1;

3. 1 is a simple eigenvalue of W ;

4. All eigenvalues of W other than 1 have magnitudes strictly less than 1.

Exercise 2.12. Prove Proposition 2.3. It should be clear which theorem of matrix analysis

should be used.

The iterations (2.7) with weights given by (2.8) are sometimes called radio consensus. Note

that the construction of the weights in (2.8) only requires local structural information of the

communication network.

50

2.5 Our First Distributed Optimization Algorithm

We return to the (unconstrained) consensus optimization problem

min
x∈Rd

f(x) =
1

N

N∑
i=1

fi(x).

For simplicity, we assume that all agents are connected by a bidirectional communication network.

We also assume that each fi is sufficiently well behaved (e.g., convex and L-smooth).

If we ignore the restrictions imposed by the distributed setting, we may apply the gradient

descent method

x(t+ 1) = x(t)− η · 1
N

N∑
i=1

∇fi(x(t))

to obtain a good solution. In the distributed setting, the above iterations cannot be implemented

directly. We let each agent i maintain a local copy of the decision variable, denoted by xi(t),

with the requirement that all xi(t) are (approximately) to each other. We then have

x(t+ 1) =
1

N

N∑
i=1

(xi(t)−∇fi(xi(t))) .

Note that the right-hand side is an average of local variables among all agents, which suggests we

may apply the consensus method for distributed averaging to compute this quantity. Summa-

rizing these ideas, we obtain our first distributed optimization algorithm given by Algorithm 1.

Some remarks on this algorithm are as follows:

1. Lines 1 to 7 are intended for reaching a consensus on the first iterate xi(0). These steps

can be removed if the initial value already satisfies xi,0 = xj,0 for all i, j (e.g., if all agents

initialize with xi,0 = 0).

2. Algorithm 1 operates on two time scales: Each iteration of the slow time scale carries out

one gradient descent step, while the fast time scale iterations run the consensus method for

distributed averaging. The t’th slow time scale iteration consists of Kt+1 fast time scale

iterations.

3. In Algorithm 1, we use coordinated step size η and numbers of inner iterations Kt for all

agents. When designing distributed optimization algorithms, we usually start from a pro-

totype in which each agent shares a coordinated set of algorithmic parameters, and then

either assumes that there are prior distributed procedures that coordinate the algorithmic

parameters for all agents, or try to generalize the algorithm with uncoordinated algorithmic

parameters. For Algorithm 1, one naive approach to coordinate the step size is to run the

following procedure:

(a) Initialize ηi(0) > 0;

(b) Run the following iterations

ηi(t+ 1) = min
j∈Ni∪{i}

ηj(t)

until t reaches the diameter of the graph.

51

Algorithm 1: Our First Distributed Optimization Algorithm

Input: Weight matrix W ∈ RN×N , step size η > 0, initial point xi,0 ∈ Rd for agent

i = 1, . . . , N , non-decreasing sequence of positive integers K0,K1,K2, . . .

1 Agent i sets yi(0; 0) = xi,0

2 for k = 0 to K0 − 1 do

3 Agent i sends yi(0; k) to its neighbors

4 Agent i updates

5 yi(0; k + 1)←
∑N

j=1
Wij yj(0; k)

6 end

7 Agent i sets xi(0) = yi(0;K0)

8 for t = 0, 1, 2, . . . do

9 Agent i sets

10 yi(t+ 1; 0) = xi(t)− η · ∇fi(xi(t))

11 for k = 0 to Kt+1 − 1 do

12 Agent i sends yi(t+ 1; k) to its neighbors

13 Agent i updates

14 yi(t+ 1; k + 1) =
∑N

j=1
Wij yj(t+ 1; k)

15 end

16 Agent i sets xi(t+ 1) = yi(t+ 1;Kt+1)

17 end

It’s evident that the above procedure selects the minimum step size among η1(0), . . . , ηN (0).

The coordination of the numbers of inner iterations Kt can be implemented by distributed

averaging with the help of the sufficient conditions in Theorem 2.4.

The rationale behind Algorithm 1 is in fact quite straightforward, given that we are now

familiar with the consensus method for distributed averaging. A rigorous analysis of the con-

vergence rate/complexity of Algorithm 1, however, requires some technical tricks that will be

taught in later chapters. Here we only present the final results; the proofs are postponed to the

appendices, which can be safely skipped.

Theorem 2.4. Suppose that each fi is L-smooth, that f = 1
N

∑N
i=1 fi is convex with a global

minimizer x∗ ∈ Rd, and that there exists G > 0 such that

∥∇fi(x)−∇f(x)∥ ≤ G, ∀x ∈ Rd, i ∈ {1, . . . , N}.

Let W ∈ RN×N be a weight matrix satisfying W1 = WT1 = 1 and

σ :=

∥∥∥∥W − 1

N
11T

∥∥∥∥
2

< 1.

Let x1, . . . , xT be generated by Algorithm 1 with initialization xi,0 = 0 for all i, η ∈ (0, 1/L] and

Kt ≥
⌈
ln[4(G(t+ 1)2/C + 3)]

ln(1/σ)

⌉
,

52

where C > 0 is an arbitrary constant parameter. Then,

f

(
1

t

t∑
τ=1

x̄(τ)

)
− f(x∗) ≤ ∥x

∗∥+ 2η2LC

2ηt
,

√√√√ 1

N

N∑
i=1

∥xi(t)− x̄(t)∥2 ≤ ηC

(t+ 1)2
,

where x̄(t) = 1
N

∑N
i=1 xi(t).

Notes on References

The formulation of the distributed state estimation problem is adapted from [Shorinwa et al.,

2020]. The distributed energy resource coordination problem is adapted from [Yang et al., 2019].

The distributed routing control problem is adapted from [Nisan et al., 2007].

The Metropolis weight matrix was adapted from the Metropolis algorithm of Markov chain

Monte Carlo [Metropolis et al., 1953, Boyd et al., 2004]. A variant of the Metropolis weight

matrix is the lazy Metropolis weight matrix, which is given by

Wij =

1

2
+

1

2max{deg(i),deg(j)}
, {i, j} ∈ E ,

0, i ̸= j and {i, j} /∈ E ,

1−
∑
k ̸=i

Wik, i = j.

The paper [Olshevsky, 2017] shows that∥∥∥∥W − 1

N
11T

∥∥∥∥
2

≤ 1− 1

71N2

for the lazy Metropolis weight matrix, regardless of the topology of the graph. As a result, the

iteration complexity of distributed averaging with the lazy Metropolis weights can be bounded

by

O

(
N2 ln

1

ϵ

)
.

To improve the dependence of the complexity on the number of agents N , [Olshevsky, 2017]

proposes a distributed averaging protocol whose complexity can be bounded by

O

(
N ln

1

ϵ

)
.

The method proposed in [Olshevsky, 2017] turns out to be closedly related to applying accelerated

gradient descent method to solving the optimization problem

min
x∈RN

1

2
xT(I −W)x,

(see also Appendix 2.A), which has been further studied in [Bu et al., 2018,Esteki et al., 2022].

There is also another approach called Chebyshev acceleration [Scaman et al., 2017] for accelerating

the consensus method for distributed averaging.

53

The method for finding the optimal weight matrix that minimizes the per-step convergence

factor was first proposed in [Xiao and Boyd, 2004].

For more details and some historical notes on the ratio consensus method for distributed

averaging, we refer to [Hadjicostis et al., 2018]. This article is also an excellent reference for the

basic consensus method and its various extensions for distributed averaging. Another excellent

reference for distributed averaging and its extensions is the book [Bullo, 2022].

2.A Accelerated Consensus for Distributed Averaging

As Exercise 2.10 shows, when the weight matrixW is further chosen to be symmetric and positive

semidefinite (which is the case if W is chosen to be the Metropolis or lazy Metropolis weight

matrix), then the consensus method for distributed averaging can be derived by applying gradient

descent to the optimization problem

min
z∈RN

1

2
zT(I −W)z, (2.9)

and the convergence guarantee can be obtained by applying the convergence result of gradient

descent for smooth and strongly convex objective functions. This suggests that, if we apply

Nesterov’s accelerated gradient descent to (2.9), we may derive a faster consensus method for

distributed averaging. For simplicity, we only consider the case where each agent’s associated

quantity is a scalar. The following materials in this section are mostly adopted from [Olshevsky,

2017].

The version of Nesterov’s accelerated gradient descent we shall apply is the following:

z(t+ 1) = y(t)− 1

L
∇f(y(t)),

y(t+ 1) = z(t+ 1) +
1−
√
κ

1 +
√
κ
(z(t+ 1)− z(t)),

where we initialize with y(0) = z(0). Note that, while the problem (2.9) is not strongly convex,

we still apply a strongly convex version of Nesterov’s accelerated gradient descent. We set L = 1

since ∥I −W∥2 ≤ 1. For κ, we shall set

κ = 1− σ, where σ =

∥∥∥∥W − 1

N
11T

∥∥∥∥
2

.

By plugging in f(z) = 1
2z

T(I −W)z, we get

z(t+ 1) = Wy(t),

y(t+ 1) = z(t+ 1) +
1−
√
κ

1 +
√
κ
(z(t+ 1)− z(t)),

(2.10)

where we initialize with y(0) = z(0). It’s not hard to see that the above iterations can be

implemented in a distributed manner as long as W is compatible with the topology of the

network.

54

We first note that 1Tz(t) remains constant for the iterations (2.10). To study its convergence,

we let 0 < λ1 ≤ · · · ≤ λN−1 ≤ 1 be the positive eigenvalues of I −W , and let ui be a normalized

eigenvector of I −W with eigenvalue λi for each i = 1, . . . , N − 1 (note that λ1 = κ = 1 − σ).

Define

z̃i(t) = uT
i z(t), ỹi(t) = uT

i y(t), i = 1, . . . , N − 1.

Then it can be verified that, for each i = 1, . . . , N − 1,

z̃i(t+ 1) = ỹi(t)− λiỹi(t),

ỹi(t+ 1) = z̃i(t+ 1) +
1−
√
κ

1 +
√
κ
(z̃i(t+ 1)− z̃i(t)),

and ỹi(0) = z̃i(0). We can immediately recognize that the above iterations are just Nesterov’s

accelerated gradient descent applied to the problem

min
z̃i∈R

λi

2
z̃2i ,

in which we interpret the objective function to be κ-strongly convex and 1-smooth. Therefore

we can apply the convergence result of Nesterov’s accelerated gradient descent (the second part

of Theorem 1.8) and obtain the following convergence guarantee:

Theorem 2.5. Suppose W ∈ RN×N is real symmetric and positive semidefinite, and satisfies

W1 = 1 and σ =
∥∥W − 1

N 11T
∥∥
2
< 1. Then the sequence generated by (2.10) satisfies∥∥∥∥z(t)− 1

N
11Tz(0)

∥∥∥∥2 ≤ 2
(
1−
√
κ
)t ∥∥∥∥z(0)− 1

N
11Tz(0)

∥∥∥∥2 .
Proof. By the second part of Theorem 1.8, we have

λi

2
z̃i(t)

2 ≤
(
1−
√
κ
)t(λi

2
z̃i(0)

2 +
κ

2
z̃i(0)

2

)
≤
(
1−
√
κ
)t · λiz̃i(0)

2,

where we used the fact that κ ≤ λi. Therefore, by denoting z̃(t) = (z̃1(t), . . . , z̃N−1(t)), we get

∥z̃(t)∥2 =

N−1∑
i=1

z̃i(t)
2 ≤ 2

(
1−
√
κ
)t N−1∑

i=1

z̃i(0)
2 = 2

(
1−
√
κ
)t ∥z̃(0)∥2 .

The final result follows by noting that ∥z̃(t)∥ =
∥∥z(t)− 1

N 11Tz(t)
∥∥.

Remark 2.3. Note that, in order to achieve

1

N

N∑
i=1

(zi(t)− z̄)2 ≤ ϵ2, z̄ :=
1

N

N∑
i=1

zi(0),

the number of iterations T needed for the accelerated consensus method (2.10) satisfies

T = O

(
1√
1− σ

ln
1

ϵ

)
.

55

Compared to the communication complexity bound for the vanilla consensus method

O

(
ln(1/ϵ)

ln(1/σ)

)
= O

(
1

1− σ
ln

1

ϵ

)
where we assume σ is sufficiently close to 1, we see that the accelerated consensus method has

better scalability as σ approaches 1.

Remark 2.4. The accelerated consensus method (2.10) requires that all agents know the quantity

κ = 1− σ, which might be difficult to achieve. On the other hand, [Olshevsky, 2017] derives the

following bound when W is chosen to be the lazy Metropolis weight matrix:

1−
∥∥∥∥W − 1

N
11T

∥∥∥∥
2

≥ 1

71N2
,

which can be used to implement (2.10) when the total number of agents N is known to all agents.

The resulting communication complexity will be O(N ln(1/ϵ)).

2.B Proof of Theorem 2.4

Denote

X(t) =

x1(t)

T

...

xN (t)T

 , x̄(t) =
1

N
X(t)T1,

E(t) = X(t)− 1

N
11TX(t), ε(t) = − 1

N

N∑
i=1

(∇fi(xi(t))−∇fi(x̄(t))).

Then it can be checked that

x̄(t+ 1) = x̄(t)− η(∇f(x̄(t)) + ε(t)),

E(t+ 1) =

(
W − 1

N
11T

)Kt+1
(
I − 1

N
11T

)
(x1(t)− η∇f1(x1(t)))

T

...

(xN (t)− η∇fN (xN (t)))T

 .

Note that ∥ε(t)∥ can be bounded by

∥ε(t)∥2 ≤ 1

N

N∑
i=1

∥∇fi(xi(t))−∇fi(x̄(t))∥2

≤ 1

N

N∑
i=1

L2∥xi(t)− x̄(t)∥2 =
L2

N
∥E(t)∥2F .

To bound ∥E(t+ 1)∥, we first note that∥∥∥∥∥∥∇fi(xi(t))−
1

N

N∑
j=1

∇fj(xj(t))

∥∥∥∥∥∥
56

≤ ∥∇fi(xi(t))−∇fi(x̄(t))∥+ ∥∇fi(x̄(t))−∇f(x̄(t))∥+

∥∥∥∥∥∥ 1

N

N∑
j=1

∇fj(x̄(t))−
1

N

N∑
j=1

∇fj(xj(t))

∥∥∥∥∥∥
≤ L∥xi(t)− x̄(t)∥+G+

1

N

N∑
j=1

L∥xj(t)− x̄(t)∥,

which implies∥∥∥∥∥∥∥∥
(
I − 1

N
11T

)
(x1(t)− η∇f1(x1(t)))

T

...

(xN (t)− η∇fN (xN (t)))T

∥∥∥∥∥∥∥∥
2

F

=

N∑
i=1

∥∥∥∥∥∥xi(t)− x̄(t)− η

∇fi(xi(t))−
1

N

N∑
j=1

∇fj(xj(t))

∥∥∥∥∥∥
2

≤
N∑
i=1

∥xi(t)− x̄(t)∥+ ηL∥xi(t)− x̄(t)∥+ ηG+
ηL

N

N∑
j=1

∥xj(t)− x̄(t)∥

2

=

∥∥∥∥∥∥∥∥∥∥

1 + 1+N

N ηL 1
N ηL · · · 1

N ηL
1
N ηL 1 + 1+N

N ηL · · · 1
N ηL

...
...

. . .
...

1
N ηL 1

N ηL · · · 1 + 1+N
N ηL

∥x1(t)− x̄(t)∥

...

∥xN (t)− x̄(t)∥

+ ηG1

∥∥∥∥∥∥∥∥∥∥

2

≤

∥∥∥∥∥∥∥∥∥∥

1 + 1+N

N ηL 1
N ηL · · · 1

N ηL
1
N ηL 1 + 1+N

N ηL · · · 1
N ηL

...
...

. . .
...

1
N ηL 1

N ηL · · · 1 + 1+N
N ηL

∥∥∥∥∥∥∥∥∥∥
2

∥∥∥∥∥∥∥∥

∥x1(t)− x̄(t)∥

...

∥xN (t)− x̄(t)∥

∥∥∥∥∥∥∥∥+ η

√
NG

2

≤
(
(1 + 2ηL)∥E(t)∥F + η

√
NG

)2
,

where in the last step we used the Gershgorin circle theorem to bound the spectral norm of the

matrix. Consequently,

∥E(t+ 1)∥F ≤ σKt+1(1 + 2ηL)∥E(t)∥F + σKt+1η
√
NG

≤ 3σKt+1∥E(t)∥F + σKt+1η
√
NG,

where we used ηL ≤ 1. Since we initialize with xi,0 = 0, we have E(0) = 0. Furthermore, by our

choice of Kt, we have

σKt+1 ≤ C

4(G(t+ 1)2 + 3C)
≤ C(t+ 1)2

(G(t+ 1)2 + 3C)(t+ 2)2
.

Therefore, as long as ∥E(t)∥F ≤ η
√
NC/(t+ 1)2, we can get

∥E(t+ 1)∥F ≤ η
√
NσKt+1

(
3C

(t+ 1)2
+G

)
≤ η
√
N

C(t+ 1)2

(G(t+ 1)2 + 3C)(t+ 2)2
· 3C +G(t+ 1)2

(t+ 1)2
= η
√
N

C

(t+ 2)2
.

57

By mathematical induction, we obtain

∥E(t)∥F ≤ η
√
N

C

(t+ 1)2
,

which leads to

∥ε(t)∥ ≤ ηL
C

(t+ 1)2
.

We now employ the following proposition for studying the evolution of x̄(t):

Proposition 2.4 (A simplifed version of [Schmidt et al., 2011, Proposition 1]). Let f : Rd → R
be convex and L-smooth. Consider the following iterations:

xt+1 = xt − η(∇f(xt) + et),

where η ∈ (0, 1/L]. Then for all t ≥ 1, we have

f

(
1

t

t∑
τ=1

xτ

)
− f(x∗) ≤ 1

2ηt
(∥x0 − x∗∥+At)

2
,

where At =
∑t−1

τ=0 η∥eτ∥.

In order to apply Proposition 2.4, we calculate

t−1∑
τ=0

η∥ε(τ)∥ ≤ η2LC

t−1∑
τ=0

1

(τ + 1)2
≤ 2η2LC.

Then by Proposition 2.4, we get

f

(
1

t

t∑
τ=1

x̄(τ)

)
− f(x∗) ≤ 1

2ηt

(
∥x∗∥+ 2η2LC

)
.

The bound on the consensus error can be obtained by multiplying ∥E(t)∥F with 1/
√
N .

Bibliography

[Boyd et al., 2004] Boyd, S., Diaconis, P., and Xiao, L. (2004). Fastest mixing Markov chain on

a graph. SIAM Review, 46(4):667–689.

[Bu et al., 2018] Bu, J., Fazel, M., and Mesbahi, M. (2018). Accelerated consensus with linear

rate of convergence. In 2018 Annual American Control Conference, pages 4931–4936.

[Bullo, 2022] Bullo, F. (2022). Lectures on Network Systems. Kindle Direct Publishing, 1.6

edition.

[Esteki et al., 2022] Esteki, A.-S., Moradian, H., and Kia, S. S. (2022). The fastest lin-

early converging discrete-time average consensus using buffered information. arXiv preprint

arXiv:2206.09916.

58

[Gharesifard and Cortés, 2010] Gharesifard, B. and Cortés, J. (2010). When does a digraph

admit a doubly stochastic adjacency matrix? In Proceedings of the 2010 American Control

Conference, pages 2440–2445.

[Hadjicostis et al., 2018] Hadjicostis, C. N., Domı́nguez-Garćıa, A. D., and Charalambous, T.

(2018). Distributed averaging and balancing in network systems: with applications to coordi-

nation and control. Foundations and Trends® in Systems and Control, 5(2-3):99–292.

[Metropolis et al., 1953] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H.,

and Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal

of Chemical Physics, 21(6):1087–1092.

[Nisan et al., 2007] Nisan, N., Roughgarden, T., Tardos, E., and Vazirani, V. V., editors (2007).

Algorithmic Game Theory. Cambridge University Press.

[Olshevsky, 2017] Olshevsky, A. (2017). Linear time average consensus and distributed opti-

mization on fixed graphs. SIAM Journal on Control and Optimization, 55(6):3990–4014.

[Scaman et al., 2017] Scaman, K., Bach, F., Bubeck, S., Lee, Y. T., and Massoulié, L. (2017).

Optimal algorithms for smooth and strongly convex distributed optimization in networks. In

Proceedings of the 34th International Conference on Machine Learning, pages 3027–3036.

[Schmidt et al., 2011] Schmidt, M., Roux, N., and Bach, F. (2011). Convergence rates of inexact

proximal-gradient methods for convex optimization. In Shawe-Taylor, J., Zemel, R., Bartlett,

P., Pereira, F., and Weinberger, K., editors, Advances in Neural Information Processing Sys-

tems, volume 24. Curran Associates, Inc.

[Shorinwa et al., 2020] Shorinwa, O., Yu, J., Halsted, T., Koufos, A., and Schwager, M. (2020).

Distributed multi-target tracking for autonomous vehicle fleets. In 2020 IEEE International

Conference on Robotics and Automation (ICRA), pages 3495–3501. IEEE.

[Xiao and Boyd, 2004] Xiao, L. and Boyd, S. (2004). Fast linear iterations for distributed aver-

aging. Systems & Control Letters, 53(1):65–78.

[Yang et al., 2019] Yang, T., Yi, X., Wu, J., Yuan, Y., Wu, D., Meng, Z., Hong, Y., Wang, H.,

Lin, Z., and Johansson, K. H. (2019). A survey of distributed optimization. Annual Reviews

in Control, 47:278–305.

59

Chapter 3

Decentralized Gradient Descent

3.1 The Algorithm

Consider the consensus optimization problem

min
x∈Rd

f(x) =
1

N

N∑
i=1

fi(x),

where each fi : Rd → R denotes the local cost function of agent i, and f is the global objective

function. We make the following assumptions:

1. The communication network is static and bi-directional, whose topology is given by an undi-

rected graph G = ({1, . . . , N}, E).

2. Each local cost function fi is differentiable.

Let W ∈ RN×N be a weight matrix that is compatible with the graph G. By the results from

the last chapter, we can choose W to satisfy the following condition, which will be assumed

throughout this chapter:

σ :=

∥∥∥∥W − 1

N
11T

∥∥∥∥
2

< 1.

The decentralized gradient descent (DGD) method is given by

xi(t+ 1) =

N∑
j=1

Wijxj(t)− ηt∇fi(xi(t)),

where ηt > 0 is the step size. A common variant of the DGD method is given by

xi(t+ 1) =

N∑
j=1

Wij (xj(t)− ηt∇fj(xj(t))) .

This variant is also called the diffusion method.

60

Just as in the previous chapter, we introduce the notation

X(t) =

— x1(t)

T —
...

— xN (t)T —

 ∈ RN×d.

We also employ the function F : RN×d → R defined by

F (X) =
N∑
i=1

fi(xi), where X =

— xT

1 —
...

— xT
N —

 . (3.1)

Note that, since each fi is assumed to be differentiable, the function F is also differentiable, and

its gradient is given by

∇F (X) =

∂F (X)

∂X1,1
· · · ∂F (X)

∂X1,d

...
. . .

...
∂F (X)

∂XN,1
· · · ∂F (X)

∂XN,d

 =

— ∇f1(x1)

T —
...

— ∇fN (xN)T —

 , whereX =

— xT

1 —
...

— xT
N —

 .

Therefore the DGD method and the diffusion method can be equivalently written as

X(t+ 1) = WX(t)− ηt∇F (X(t))

and

X(t+ 1) = W (X(t)− ηt∇F (X(t))),

respectively. In this chapter, we will mainly focus on the original DGD method, but the conver-

gence analysis and results can be adapted to the diffusion method without much difficulty.

Exercise 3.1. Suppose each fi is convex and L-smooth, and let RN×d be equipped with

the inner product

⟨X,Y⟩ := tr(XTY).

Show that the corresponding F defined by (3.1) is convex and L-smooth, i.e.,

0 ≤ F (Y)− F (X)− ⟨∇F (X),Y − X⟩ ≤ L

2
∥Y − X∥2F

for any X,Y ∈ RN×d.

3.2 Useful Observations and Tools for Convergence Anal-

ysis

We let x̄(t) denote the averaged iterate among all agents, defined by

x̄(t) =
1

N

N∑
i=1

xi(t).

61

It’s not hard to verify that

x̄(t) =
1

N

(
1TX(t)

)T
and that

x̄(t+ 1) = x̄(t)− ηt
1

N
(1T∇F (X(t)))T

= x̄(t)− ηt
1

N

N∑
i=1

∇fi(xi(t)).
(3.2)

Next, we let E(t) denote the matrix of consensus errors defined by

E(t) = X(t)− 1

N
11TX(t) =

(x1(t)− x̄(t))T

...

(xN (t)− x̄(t))T

 .

Then it can be checked that

E(t+ 1) =

(
W − 1

N
11T

)
E(t)− ηt

(
I − 1

N
11T

)
∇F (X(t)). (3.3)

As we shall see, our convergence analysis of DGD roughly consists of the following ingredients:

1. Analyzing how the consensus error E(t) changes as t increases. Ideally, we wish to establish

E(t) → 0 as t → ∞. However, as long as x̄(t) can eventually provide a good solution to the

minimization of f(x), it may be okay if we only require E(t) to remain bounded, as we can

run additional consensus steps after completing the DGD iterations.

2. Analyzing how the averaged iterate x̄(t) evolves with time. Particularly, we will be interested

in whether f(x̄(t)) can approach the optimal value f∗ as t increases.

The Consensus Error E(t)

Analysis of the consensus error will be mainly based on the equality (3.3). Particularly, since we

have assumed that

σ =

∥∥∥∥W − 1

N
11T

∥∥∥∥
2

< 1,

By denoting

∆(t) =

(
I − 1

N
11T

)
∇F (X(t)),

we directly have

∥E(t+ 1)∥F ≤ σ∥E(t)∥F + ηt∥∆(t)∥F . (3.4)

This inequality leads to the following result:

Lemma 3.1. Suppose there exists δ > 0 such that ∥∆(t)∥ ≤ δ for all t. Let η0 ≥ η1 ≥ η2 ≥ · · ·
be a sequence of non-increasing step sizes. Then

∥E(t)∥F ≤ σt∥E(0)∥F + δ

t−1∑
τ=0

σt−1−τητ , (3.5)

62

and
t−1∑
τ=0

ητ∥E(τ)∥2F ≤
2η0∥E(0)∥2F

1− σ2
+

4δ2

(1− σ2)2

t−2∑
τ=0

η3τ (3.6)

Proof. By mathematical induction, we can derive from (3.4) that

∥E(t)∥F ≤ σt∥E(0)∥F +

t−1∑
τ=0

σt−1−τητ∥∆(τ)∥F , (3.7)

By plugging in ∥∆(t)∥F ≤ δ, we get the inequality (3.5).

To show (3.6), we use (3.4) to obtain

∥E(t+ 1)∥2F ≤
(
1 +

1− σ2

2σ2

)
σ2∥E(t)∥2F +

(
1 +

2σ2

1− σ2

)
η2t δ

2

=
1 + σ2

2
∥E(t)∥2F +

1 + σ2

1− σ2
δ2η2t ≤

1 + σ2

2
∥E(t)∥2F +

2δ2

1− σ2
η2t

where we used the inequality ∥u+v∥2 ≤ (1+ϵ)∥u∥2+(1+1/ϵ)∥v∥2 for any ϵ > 0. By mathematical

induction, we get

∥E(t)∥2F ≤
(
1 + σ2

2

)t
∥E(0)∥2F +

2δ2

1− σ2

t−1∑
s=0

(
1 + σ2

2

)t−1−s

η2s .

Consequently,

t−1∑
τ=0

ητ∥E(τ)∥2F ≤
t−1∑
τ=0

ητ

(
1 + σ2

2

)τ
∥E(0)∥2F +

2δ2

1− σ2

t−1∑
τ=1

τ−1∑
s=0

(
1 + σ2

2

)τ−1−s

ητη
2
s .

Now for the first term on the right-hand side, we have

t−1∑
τ=0

ητ

(
1 + σ2

2

)τ
∥E(0)∥2F ≤ η0∥E(0)∥2F

t−1∑
τ=0

(
1 + σ2

2

)τ
≤ 2η0∥E(0)∥2F

1− σ2
,

and to bound the second term, we can interchange the double sum to get

t−1∑
τ=1

τ−1∑
s=0

(
1 + σ2

2

)τ−1−s

ητη
2
s =

t−2∑
s=0

η2s

(
1 + σ2

2

)−1−s t−1∑
τ=s+1

ητ

(
1 + σ2

2

)τ

≤
t−2∑
s=0

η3s

(
1 + σ2

2

)−1−s t−1∑
τ=s+1

(
1 + σ2

2

)τ

≤ 2

1− σ2

t−2∑
s=0

η3s .

Therefore
t−1∑
τ=0

ητ∥E(τ)∥2F ≤
2η0∥E(0)∥2F

1− σ2
+

4δ2

(1− σ2)2

t−2∑
s=0

η3s ,

which completes the proof.

63

Exercise 3.2. Let f : (0,+∞) → [0,+∞) be a strictly decreasing function, and let

t ∈ N\{0} be arbitrary.

1. Show that
t∑

τ=1

f(τ) >

∫ t+1

1

f(x) dx.

2. Suppose further that f is also convex, show that∫ b

a

f(x) dx ≥ (b− a)f

(
a+ b

2

)
for any 0 < a ≤ b. Then use the above inequality to prove that

t∑
τ=1

f(τ) ≤
∫ t+1/2

1/2

f(x) dx.

3. Let β ∈ (0, 1] be arbitrary. Use the above results to derive lower and upper bounds

for
t∑

τ=1

1

τβ
.

Exercise 3.3. Let σ ∈ (0, 1) and β > 0 be arbitrary. Show that

lim
t→∞

(1− σ)tβ
t∑

τ=1

σt−τ

τβ
= 1.

(Hint: You may consider using the Stolz–Cesàro theorem: Given two sequences (an)n∈N,

(bn)n∈N of real numbers, suppose that (bn)n∈N is strictly increasing and limn→∞ bn = +∞,

and that

lim
n→∞

an+1 − an
bn+1 − bn

= r

for some r ∈ R. Then limn→∞ an/bn = r.)

Exercise 3.4. Let η0 ≥ η1 ≥ η2 ≥ · · · be a non-increasing sequence of step sizes. Suppose

E(t) ∈ RN×d satisfies

∥E(t+ 1)∥F ≤ σ∥E(t)∥F + ηtδ,

where σ ∈ (0, 1), δ > 0, and ηt > 0 for all t. Show that

t−1∑
τ=0

ητ∥E(τ)∥F ≤
η0∥E(0)∥F

1− σ
+

δ

1− σ

t−2∑
τ=0

η2τ .

64

The Averaged Iterate

We now study the averaged iterate x̄(t). We first make the following assumptions on the local

cost functions:

Assumption 3.1. 1. Each fi : Rd → R is convex, G-Lipschitz continuous and L-smooth.

2. There exists x∗ ∈ Rd such that f(x∗) = infx∈Rd f(x).

We introduce the notation

ḡ(t) =
1

N

N∑
i=1

∇fi(xi(t)) =
1

N
11T∇F (X(t)).

It can be seen that x̄(t) satisfies the following iteration

x̄(t+ 1) = x̄(t)− ηtḡ(t).

We begin our analysis by noting that

∥x̄(t)− x∗∥2 = ∥x̄(t+ 1) + ηtḡ(t)− x∗∥2

= ∥x̄(t+ 1)− x∗∥2 + η2t ∥ḡ(t)∥2 + 2ηt⟨ḡ(t), x̄(t+ 1)− x∗⟩,

which leads to

1

2
∥x̄(t+ 1)− x∗∥2 = ηt⟨ḡ(t), x∗ − x̄(t+ 1)⟩+ 1

2
∥x̄(t)− x∗∥2 − 1

2
∥x̄(t+ 1)− x̄(t)∥2. (3.8)

Just like in the analysis of centralized GD, we try to associate the inner product ⟨ḡ(t), x∗−x̄(t+1)

with the objective values f(x̄(t+ 1)) and f(x∗). Note that

⟨ḡ(t), x∗ − x̄(t+ 1)⟩ = ⟨ḡ(t), x∗ − x̄(t)⟩+ ⟨ḡ(t), x̄(t)− x̄(t+ 1)⟩.

For the first term, we have

⟨ḡ(t), x∗ − x̄(t)⟩ = 1

N

N∑
i=1

⟨∇fi(xi(t)), x
∗ − x̄(t)⟩

=
1

N

N∑
i=1

⟨∇fi(xi(t)), x
∗ − xi(t)⟩+

1

N

N∑
i=1

⟨∇fi(xi(t)), xi(t)− x̄(t)⟩

≤ 1

N

N∑
i=1

(fi(x
∗)− fi(xi(t))) +

1

N

N∑
i=1

⟨∇fi(xi(t)), xi(t)− x̄(t)⟩

= f(x∗)− f̂(X(t)),

(3.9)

where we employ the convexity of each fi in the first inequality, and denote

f̂(X) :=
1

N

N∑
i=1

(fi(xi) + ⟨∇fi(xi), x̄− xi⟩) =
1

N

(
F (X) + tr

[
∇F (X)

(
1

N
11TX− X

)T])
.

65

To bound the second term, we note that the L-smoothness of each fi implies

fi(x̄(t+ 1)) ≤ fi(xi(t)) + ⟨∇fi(xi(t)), x̄(t+ 1)− xi(t)⟩+
L

2
∥x̄(t+ 1)− xi(t)∥2

= fi(xi(t)) + ⟨∇fi(xi(t)), x̄(t)− xi(t)⟩+ ⟨∇fi(xi(t)), x̄(t+ 1)− x̄(t)⟩

+
L

2
∥x̄(t+ 1)− xi(t)∥2.

By taking the average over i = 1, . . . , N , we get

f(x̄(t+ 1)) ≤ 1

N

N∑
i=1

(fi(xi(t)) + ⟨∇fi(xi(t)), x̄(t)− xi(t)⟩) + ⟨ḡ(t), x̄(t+ 1)− x̄(t)⟩

+
1

N

N∑
i=1

L

2
∥x̄(t+ 1)− xi(t)∥2

= f̂(X(t)) + ⟨ḡ(t), x̄(t+ 1)− x̄(t)⟩

+
L

2N

N∑
i=1

(
∥x̄(t+ 1)− x̄(t)∥2 + ∥x̄(t)− xi(t)∥2 + 2⟨x̄(t+ 1)− x̄(t), x̄(t)− xi(t)⟩

)
= f̂(X(t)) + ⟨ḡ(t), x̄(t+ 1)− x̄(t)⟩+ L

2
∥x̄(t+ 1)− x̄(t)∥2 + L

2N
∥E(t)∥2F .

Therefore

⟨ḡ(t), x̄(t)− x̄(t+ 1)⟩ ≤ f̂(X(t))− f(x̄(t+ 1)) +
L

2
∥x̄(t+ 1)− x̄(t)∥2 + L

2N
∥E(t)∥2F .

By adding the two bounds, we get

⟨ḡ(t), x∗ − x̄(t+ 1)⟩ ≤ f(x∗)− f(x̄(t+ 1)) +
L

2
∥x̄(t+ 1)− x̄(t)∥2 + L

2N
∥E(t)∥2F ,

and after plugging this inequality into (3.8), we get

ηtf(x̄(t+ 1)) +
1

2
∥x̄(t+ 1)− x∗∥2

≤ ηtf(x
∗) +

1

2
∥x̄(t)− x∗∥2 + ηtL

2N
∥E(t)∥2F +

ηtL− 1

2
∥x̄(t+ 1)− x̄(t)∥2.

By taking the telescoping sum, we can obtain the following lemma:

Lemma 3.2. Suppose Assumption 3.1 holds, and x̄(t) = 1
N

∑N
i=1 xi(t) satisfies

x̄(t+ 1) = x̄(t)− ηt ·
1

N

N∑
i=1

∇fi(xi(t)), (3.10)

where ηt > 0 for each t ∈ N. Then∑t
τ=1 ητ−1(f(x̄(τ))− f(x∗))∑t

τ=1 ητ−1

≤ ∥x̄(0)− x∗∥2

2
∑t−1

τ=0 ητ
+

L

2N
·
∑t−1

τ=0 ητ∥E(τ)∥2F∑t−1
τ=0 ητ

+

∑t−1
τ=0(ητL− 1)∥x̄(τ + 1)− x̄(τ)∥2

2
∑t−1

τ=0 ητ
,

66

where

E(t) =

(x1(t)− x̄(t))T

...

(xN (t)− x̄(t))T

 .

Remark 3.1. Note that the derivation of Lemma 3.2 requires the local variable iterates xi(t) to

only satisfy (3.10) but does not assume any detailed local update rule. As a result, Lemma 3.2

may also be used for the analysis of other distributed optimization algorithms as long as (3.10)

(and other technical conditions on the local cost functions) are satisfied. Particularly, Lemma 3.2

will be employed when analyzing the gradient tracking algorithm, which employs more compli-

cated local update rules but still satisfies (3.10).

Remark 3.2. The above derivations adopt the routine that we mainly focus on the evolution of

x̄(t) and f(x̄(t))− f(x∗), and whenever a quantity involving individual xi(t) cannot be cancelled

out, we approximate it by x̄(t) and bound the error via ∥E(t)∥F . In the literature, there is

also another approach that focuses on the evolution of 1
N F (X(t))− f(x∗) = 1

N

∑N
i=1(fi(xi(t))−

f(x∗)) and only in the very end derives bounds on f(x̄(t))− f(x∗) via ∥E(t)∥F . Here we adopt

the former approach as it seems more similar to the analysis of the centralized GD, but the

latter approach may be useful for some more complicated settings (e.g., constrained problems,

composite objective functions, etc.).

3.3 Convergence Analysis: The Convex and Smooth Case

By combining Lemmas 3.1 and 3.2, we can now derive convergence results for DGD.

Theorem 3.1. Suppose each fi : Rd → R is convex, G-Lipschitz and L-smooth, and suppose

f(x∗) = infx∈Rd f(x) for some x∗ ∈ Rd. Let η0 ≥ η1 ≥ η2 ≥ · · · be a sequence of non-increasing

positive step sizes satisfying η0L ≤ 1. Denote

E0 =

√√√√ 1

N

N∑
i=1

∥xi(0)− x̄(0)∥2.

Then∑t
τ=1 ητ−1(f(x̄(τ))− f(x∗))∑t

τ=1 ητ−1

≤ ∥x̄(0)− x∗∥2

2
∑t−1

τ=0 ητ
+

η0LE
2
0

(1− σ2)
∑t−1

τ=0 ητ
+

2LG2
∑t−2

τ=0 η
3
τ

(1− σ2)2
∑t−1

τ=0 ητ
.

Moreover,

1

N

N∑
i=1

∥xi(t)− x̄(t)∥2 ≤

(
σtE0 +G

t−1∑
τ=0

σt−1−τητ

)2

.

Proof. Since ηtL ≤ η0L ≤ 1 for all t, from Lemma 3.2, we get∑t
τ=1 ητ−1(f(x̄(τ))− f(x∗))∑t

τ=1 ητ−1

≤ ∥x̄(0)− x∗∥2

2
∑t−1

τ=0 ητ
+

L

2N
·
∑t−1

τ=0 ητ∥E(τ)∥2F∑t−1
τ=0 ητ

. (3.11)

67

Then, since each fi is G-Lipschitz continuous, by Lemma 1.2 and Proposition 1.2, we have

∥∇fi(x)∥ ≤ G for all x ∈ Rd and all i. Therefore

∥∆(t)∥2F =

∥∥∥∥(I − 1

N
11T

)
∇F (X(t))

∥∥∥∥2
F

≤ ∥∇F (X(t))∥2F

=

N∑
i=1

∥∇fi(xi(t))∥2 ≤ NG2,

where in the first inequality we used
∥∥I − 1

N 11T
∥∥
2
≤ 1. We can now apply Lemma 3.1 and

obtain

∥E(t)∥F ≤ σt∥E(0)∥F +
√
NG

t−1∑
τ=0

σt−1−τητ

and
t−1∑
τ=0

ητ∥E(τ)∥2F ≤
2η0∥E(0)∥2F

1− σ2
+

4NG2

(1− σ2)2

t−2∑
τ=0

η3τ .

The bound for the consensus error is now evident. By plugging the above bound into (3.11)

and noting that E0 = ∥E(0)∥F /
√
N , we get the desired convergence results for the objective

values.

Corollary 3.1. Let the conditions of Theorem 3.1 be satisfied. For simplicity, suppose every

agent starts from the same initial point so that E0 = 0.

1. Suppose we choose a constant step size ηt = η ≤ 1/L. Then

1

t

t∑
τ=1

(f(x̄(t))− f(x∗)) ≤ ∥x̄(0)− x∗∥2

2ηt
+

2η2LG2

(1− σ2)2
,

and

1

N

N∑
i=1

∥xi(t)− x̄(t)∥2 ≤ η2G2

(1− σ)2
.

2. Suppose we choose the step sizes to be ηt =
α

L(t+1)β
for some α ∈ (0, 1) and β ∈ (0, 1). Then

∑t
τ=1 ητ−1(f(x̄(τ))− f(x∗))∑t

τ=1 ητ−1

≤

O

(
1

t2β

)
, 0 < β < 1/3,

O

(
ln t

t2/3

)
, β = 1/3,

O

(
1

t1−β

)
, 1/3 < β < 1,

and

1

N

N∑
i=1

∥xi(t)− x̄(t)∥2 ≤ O

(
1

t2β

)
.

68

Exercise 3.5. Prove Corollary 3.1.

Some discussions of Theorem 3.1 and Corollary 3.1 are provided as follows:

1. The conditions of Theorem 3.1 include the Lipschitz continuity of each local cost function,

which is not required for the convergence of centralized GD and also does not hold for some

problem scenarios we may encounter. This assumption ensures that

∥∆(t)∥2F =

N∑
i=1

∥∥∥∥∥∥∇fi(xi(t))−
1

N

N∑
j=1

∇fj(xj(t))

∥∥∥∥∥∥
2

is upper bounded throughout the DGD iterations. One may wonder whether we can establish

the boundedness of ∥∆(t)∥F automatically without imposing additional assumptions. How-

ever, as the following example shows, if we only assume convexity and L-smoothness for each

local cost function, we may not able to derive a bound on the consensus error.

Example 3.1 ([Jakovetic et al., 2011]). Consider a 2-agent system. For an arbitrary θ > 0,

let the local cost functions fθ
i : R→ R, i = 1, 2 be defined by

fθ
i (x) =

1

2
(x+ (−1)iθ)2.

It’s not hard to see that each fθ
i is convex and 1-smooth. Let the weight matrix be given by

W =
1

4

[
3 1

1 3

]
.

Let the initial points be x1(0) = x2(0) = 0, let the step sizes be ηt = η0/(t + 1)β with

β ∈ (0, 1) and η0 ≤ 1/2, and let (xi(t))t≥1 be generated by the DGD algorithm. Then it’s

not hard to see that x1(t) = −x2(t) ≥ 0, and

x1(t+ 1) =
3

4
x1(t)−

1

4
x1(t)− ηt(x1(t)− θ) =

(
1

2
− ηt

)
x1(t) + ηtθ.

Therefore the consensus error satisfies

1

2

2∑
i=1

∥xi(t)− x̄(t)∥2 ≥ η2t θ
2 =

η20θ
2

(t+ 1)2β
.

We see that, for each fixed t, the consensus error can be made arbitrarily large by letting θ

be sufficiently large.

The above example suggests that, even if each fi is assumed to be convex and smooth, a

bound on the consensus error may inevitably depend on some other parameter of the problem

that is associated with bounding ∥∆(t)∥F . In the next section, we will present an approach

to replace the condition of Lipschitz continuity with a milder (but not necessarily weaker)

one.

69

2. When we choose a constant step size ηt = η, the first part of Corollary 3.1 shows that

there is a O(η2/(1 − σ)2) gap that does not vanish as t → ∞, suggesting that the DGD

algorithm does not converge exactly to the optimal. This is also in accordance with the

observation that the optimal solution X∗ = 1x∗T is not a fixed-point of the DGD iteration

X(t+ 1) = WX(t)− η∇F (X(t)).

3. When we employ a diminishing sequence of step sizes of the form ηt ∝ 1/(t+1)β for β ∈ (0, 1),

the second part of Corollary 3.1 shows that the DGD iterations will converge but with an

inferior rate compared to centralized GD. Particularly, choosing β = 1/3 provides the optimal

rate O
(
ln t/t2/3

)
, slower than the O(1/t) rate achieved by centralized GD. This gap is one

of the motivations for proposing gradient-tracking-based distributed optimization algorithms

that can mitigate this gap.

We note that the O
(
ln t/t2/3

)
rate derived here is better than the O(ln t/

√
t) rate usually

found in existing literature (e.g., [Chen, 2012]). On the other hand, this rate agrees with the

Ω(1/t2/3) lower bound on the worst-case optimality gap presented in [Jakovetic et al., 2011]

up to a logarithmic factor.

3.4 Another Perspective of DGD with Constant Step Sizes

In this section, we analyze DGD with a constant step size from another perspective. Specifically,

when the step size is constant, we may view the DGD iterations as the gradient descent updates

for an optimization problem. This perspective allows us to replace the condition ∥∇fi(x)∥ ≤ G

for DGD’s convergence when ηt is constant.

We make the following assumptions on the local cost functions fi and the global objective

function f :

Assumption 3.2. Each local cost function fi : Rd → R is convex and L-smooth, and

f ℓ
i := inf

x∈Rd
fi(x) > −∞.

Note that we do not assume ∥∇fi(x)∥ to be uniformly bounded any more. Instead, we

assume that each fi is lower bounded, which seem to have wider applicability. The idea behind

this “relaxation” of the condition is demonstrated by the following lemma:

Lemma 3.3. Suppose h : Rd → R is L-smooth, and has a finite lower bound hℓ = infx∈Rd h(x) >

−∞. Then

∥∇h(x)∥2 ≤ 2L(h(x)− hℓ), ∀x ∈ Rd.

Proof. We have

hℓ ≤ h

(
x− 1

L
∇h(x)

)
≤ h(x)− 1

2L
∥∇h(x)∥2,

which then implies the desired inequality.

70

The result of Lemma 3.3 suggests that, in the DGD iterations, if we can ensure that each

fi(xi(t))−f ℓ
i is upper bounded, then each ∥∇fi(xi(t))∥, and consequently ∥∆(t)∥F , will be upper

bounded. Since fi(xi(t)) − f ℓ
i ≥ 0 for any i, we have that each fi(xi(t)) − f ℓ

i is upper bounded

if and only if

F (X(t)) =
N∑
i=1

(fi(xi(t))− f ℓ
i) +

N∑
i=1

f ℓ
i

is upper bounded. Recall that the DGD iterations can be written as

X(t+ 1) = WX(t)− η∇F (X(t)).

If we can associate the DGD iterations with the gradient descent iterations of some optimization

problem with F (X) being part of its objective function, then we might be able to establish the

upper-boundedness of F (X(t)) since GD is a descent algorithm.

We now present how the above idea can be realized in detail. We make the following assump-

tions on the weight matrix:

Assumption 3.3. 1. W is real symmetric and positive semidefinite.

2. W1 = 1, and

σ :=

∥∥∥∥W − 1

N
11T

∥∥∥∥
2

< 1.

Note that the positive semidefiniteness of W does not really restrict the applicability of our

theory: For any symmetric W̃ ∈ RN×N satisfying W̃1 = 1 and
∥∥∥W̃ − 1

N 11T
∥∥∥
2
< 1, we can

construct a new weight matrix W = (W̃ + I)/2 which is positive semidefinite.

We then define the seminorm1

∥X∥I−W :=
√
tr(XT(I −W)X), ∀X ∈ RN×d.

Note that ∥ · ∥I−W is only a seminorm since ∥X∥I−W = 0 does not imply X = 0. Instead, we

have

Lemma 3.4. ∥X∥2I−W = 0 if and only if X has identical row vectors. Moreover,∥∥∥∥X− 1

N
11TX

∥∥∥∥2
F

≤ 1

1− σ
∥X∥2I−W . (3.12)

Proof. If X has identical row vectors, then WX = X, which implies that (I −W)X = 0 and

subsequently ∥X∥I−W = 0.

We then proceed to show the inequality (3.12). Let x(1), . . . , x(d) be the column vectors of

X. It can be checked that

∥X∥2I−W =

d∑
j=1

x(j)T(I −W)x(j).

1A seminorm is a function p defined on a vector space that i) takes nonnegative values, ii) satisfies p(λv) =

|λ| · p(v) for any scalar λ and vector v, and iii) satisfies the triangle inequality.

71

Then since

I −W =

(
I − 1

N
11T

)
(I −W)

(
I − 1

N
11T

)
,

we get

∥X∥2I−W =

d∑
j=1

(
x(j) − 1

N
11Tx(j)

)T

(I −W)

(
x(j) − 1

N
11Tx(j)

)
.

Note that the vector x(j) − 1
N 11Tx(j) is orthogonal to 1, and therefore(

x(j) − 1

N
11Tx(j)

)T

(I −W)

(
x(j) − 1

N
11Tx(j)

)
≥
∥∥∥∥x(j) − 1

N
11Tx(j)

∥∥∥∥2 · min
x∈RN :⟨x,1⟩=0

xT(I −W)x

∥x∥2

= (1− σ)

∥∥∥∥x(j) − 1

N
11Tx(j)

∥∥∥∥2 ,
where we used the fact that the two smallest eigenvalues of I −W are 0 and 1 − σ, while the

eigenspace associated with the eigenvalue 0 is span{1}. Consequently,

∥X∥2I−W ≥ (1− σ)

d∑
j=1

∥∥∥∥x(j) − 1

N
11Tx(j)

∥∥∥∥2 = (1− σ)

∥∥∥∥X− 1

N
11TX

∥∥∥∥2
F

,

which is just (3.12).

Finally, by using the inequality (3.12), it’s not hard to see that ∥X∥I−W = 0 implies X =
1
N 11TX, i.e., X has identical row vectors.

Exercise 3.6. Suppose the weight matrix W ∈ RN×N satisfies Assumption 3.3. Let

g(X) =
1

2
∥X∥2I−W , X ∈ RN×d.

Show that

1. ∇g(X) = (I −W)X.

2. g(X) is 1-smooth.

Now let us consider the following optimization problem:

min
X∈RN×d

F (X) +
1

2η
∥X∥2I−W , (3.13)

where η > 0 is a constant. By the result of Exercise 3.6, we see that the gradient descent iteration

with a constant step size η for solving (3.13) is given by

X(t+ 1) = WX(t)− η∇F (X(t)),

72

which is just the DGD method with a constant step size η. By the results of Exercises 3.1 and 3.6,

the objective function of (3.13) is (L+1/(2η))-smooth. Therefore, as long as η(L+1/(2η)) ≤ 2,

i.e., η ≤ 3/(2L), we can use the descent property of GD to get

F (X(t)) ≤ F (X(t)) +
1

2η
∥X(t)∥2I−W ≤ F (X(0)) +

1

2η
∥X(0)∥2I−W .

By employing Lemma 3.3, we arrive at the following theorem:

Theorem 3.2. Suppose Assumptions 3.3 and 3.2 hold, and suppose x∗ ∈ Rd is a minimizer of

f(x). Let the agents share the same initial point xi(0) = x0, and denote

D =

√√√√f(x0)−
1

N

N∑
i=1

f ℓ
i .

Then for the DGD iteration with constant step size η ≤ 1/L, we have

∥∆(t)∥2F ≤ 2LND2.

Consequently,

1

t

t∑
τ=1

(f(x̄(τ))− f(x∗)) ≤ ∥x0 − x∗∥2

2ηt
+

4η2L2D2

(1− σ2)2
,

and

1

N

N∑
i=1

∥xi(t)− x̄(t)∥2 ≤ 2LD2η2

(1− σ)2
.

Exercise 3.7. Suppose the weight matrix W ∈ RN×N satisfies Assumption 3.3 and is

positive definite. This time, for X ∈ RN×d, we define

∥X∥W−1−I :=
√
tr(XT(W−1 − I)X).

1. Show that ∥X∥W−1−I = 0 if and only if X has identical row vectors.

2. Consider the following optimization problem

min
X∈RN×d

F (X) +
1

2η
∥X∥2W−1−I ,

where where F is defined by (3.1), and we assume each fi is convex. Show that X∗ is

an optimal solution to this problem if and only if

X∗ = W (X∗ − η∇F (X∗)).

Convergence for Strongly Convex Functions

One of the technical difficulties of deriving convergence results of DGD for strongly convex

functions is to establish the boundedness of ∥∆(t)∥F . When fi : Rd → R is strongly convex,

73

we cannot assume that fi is Lipschitz continuous over Rd anymore, as we have the following

proposition:

Proposition 3.1. Suppose f : Rd → R is µ-strongly convex. Then there does not exist G > 0

such that f is G-Lipschitz continuous over Rd.

Exercise 3.8. Prove Proposition 3.1. Note that we do not assume the function f is

differentiable.

Fortunately, as we have seen, the aforementioned issue can be addressed when we employ

a constant step size ηt = η and adopt the perspective of viewing DGD as gradient descent for

minimizing F (X) + ∥X∥2I−W /(2η). Specifically, if each fi is µ-strongly convex and L-smooth,

then Assumption 3.2 will be automatically satisfied. Therefore, assuming that each agent starts

from the same initial point xi(0) = x0, we have

∥∆(t)∥2F ≤ 2LND2, D :=

√√√√f(x0)−
1

N

N∑
i=1

f ℓ
i .

Lemma 3.1 then gives

∥E(t)∥F ≤
√
2LNDη

1− σ
.

We then analyze the convergence of the averaged iterate x̄(t). Let x∗ be the minimizer of f(x),

and let η ∈ (0, 2/(µ+ L)]. Denoting α = 1− ηµ, we have

∥x̄(t+ 1)− x∗∥ ≤ ∥x̄(t)− η∇f(x̄(t))− x∗∥+ η∥∇f(x̄(t))− ḡ(t)∥

≤ α∥x̄(t)− x∗∥+ η
1

N

∥∥∥∥∥
N∑
i=1

(∇fi(x̄(t))−∇fi(xi(t)))

∥∥∥∥∥
≤ α∥x̄(t)− x∗∥+ η

1

N

N∑
i=1

∥∇fi(x̄(t))−∇fi(xi(t))∥

≤ α∥x̄(t)− x∗∥+ η
L

N

N∑
i=1

∥x̄(t)− xi(t)∥

≤ α∥x̄(t)− x∗∥+ η
L√
N
∥E(t)∥F ≤ α∥x̄(t)− x∗∥+ η2L

√
2LD

1− σ
,

where the second inequality follows from Theorem 1.4. Consequently, it can be shown by math-

ematical induction that

∥x̄(t)− x∗∥ ≤ (1− ηµ)t∥x0 − x∗∥+ ηL
√
2LD

µ(1− σ)
, (3.14)

which establishes the convergence of DGD for strongly convex functions with constant step sizes.

It turns out that the issue of bounding ∥∆(t)∥F can also be addressed when we employ

diminishing step sizes. We refer interested readers to [Choi and Kim, 2022,Choi, 2023] for the

analysis with diminishing step sizes.

74

3.5 A Brief Discussion on the Complexity and Scalability

We provide a brief discussion on the complexity and scalability of the DGD algorithm. For

simplicity of analysis we only consider the constant step size setting.

The Convex and Smooth Case. Assuming that the conditions of Theorem 3.2 (or the first

part of Corollary 3.1 are satisfied, we have the bound

min
τ∈{1,...,t}

f(x̄(τ))− f(x∗) ≤ C1

ηt
+

C2(ηL)
2

(1− σ2)2
,

where C1 and C2 are some positive quantities that we assume to be constant. It’s not hard to

see that, if we plan ahead the total number of iterations of DGD to be T , and choose the step

size η to be

η =
α

L
· (1− σ2)2/3

T 1/3

for a numerical constant α ∈ (0, 1], then

min
τ=1,...,T

f(x̄(τ))− f(x∗) ≤ O

(
1

((1− σ2)T)2/3
.

)
Consequently, to achieve minτ=1,...,T f(x̄(τ)) − f(x∗) ≤ ϵ, the iteration and communication

complexity of DGD can be upper bounded by

O

(
1

(1− σ2)ϵ3/2

)
.

The above complexity bound also provides information on the scalability of the DGD algorithm.

Especially, since 1−σ2

ln(1/σ) → 2 as σ ↑ 1, we see that the complexity bound of DGD has similar

dependence on σ compared with the basic consensus method for distributed averaging.

The Strongly Convex and Smooth Case. Without loss of generality we may assume η ≤
2/(µ+ L). In this case α = 1− ηµ, and by (3.14) and 1− x ≤ e−x, we have

∥x̄(t)− x∗∥ ≤ C1e
−ηκLt +

C2ηL

κ(1− σ)
,

where C1 and C2 are some positive quantities that we assume to be constant, and κ = µ/L.

Now, suppose we fix the total number of iterations to be a sufficiently large T , and choose the

constant step size η as

η =
lnT

κLT
.

Then,

∥x̄(T)− x∗∥ ≤ C1

T
+

C2 lnT

κ2(1− σ)T
= O

(
lnT

κ2(1− σ)T

)
.

75

As a result, we can see that, in order to achieve ∥x̄(t)−x∗∥ ≤ ϵ, the iteration and communication

complexity can be bounded by (see Exercise 3.9)

O

(
ln(1/ϵ)

κ2(1− σ)ϵ

)
.

Since 1−σ
ln(1/σ) → 1 as σ ↑ 1, we see that the complexity bound of DGD has similar dependence on

σ compared with the basic consensus method for distributed averaging.

Exercise 3.9. Let p > 0 be arbitrary, and let f : [1,+∞)→ R be defined by

f(t) =
ln t

tp
.

1. Find t0 such that f(t) is strictly decreasing over [t0,+∞).

2. Let h : (0, f(t0)]→ [t0,+∞) be the inverse function of f on [t0,+∞). Show that

lim
ϵ↓0

h(ϵ)

(ϵ−1 ln(1/ϵ))1/p

exists, and find its value.

3.6 Some Extensions

We now give brief introductions to two extensions of the decentralized gradient descent method.

Decentralized subgradient descent. The decentralized subgradient descent method applies

to consensus optimization problems in which the cost functions are convex but possibly nons-

mooth. The iterations of decentralized subgradient descent are given by

xi(t+ 1) =

N∑
j=1

Wijxj(t)− ηtgi(t),

where gi(t) is an arbitrary element in the subdifferential of the local cost function ∂fi(xi(t)). It

also admits diffusion variants just like DGD.

To establish convergence guarantees, we can assume each fi : Rd → R to be convex and

G-Lipschitz continuous; we also assume ∥E(0)∥F = 0 for simplicity. Then ∥gi(t)∥ ≤ G for all i

and t, and thus

∥∆(t)∥F =

∥∥∥∥∥∥∥∥
(
I − 1

N
11T

)
g1(t)

T

...

gN (t)T

∥∥∥∥∥∥∥∥ ≤

∥∥∥∥∥∥∥∥

g1(t)

T

...

gN (t)T

∥∥∥∥∥∥∥∥ ≤
√
NG,

76

implying that Lemma 3.1 and the results of Exercise 3.4 can be applied. To study the convergence

of x̄(t), by denoting ḡ(t) = 1
N

∑N
i=1 gi(t), we can still have

1

2
∥x̄(t+ 1)− x∗∥2 = ηt⟨ḡ(t), x∗ − x̄(t+ 1)⟩+ 1

2
∥x̄(t)− x∗∥2 − 1

2
∥x̄(t+ 1)− x̄(t)∥2. (3.8)

This time, to bound ⟨ḡ(t), x∗ − x̄(t+ 1)⟩, we note that

⟨ḡ(t), x∗ − x̄(t+ 1)⟩ = ⟨ḡ(t), x∗ − x̄(t)⟩+ ⟨ḡ(t), x̄(t)− x̄(t+ 1)⟩

≤ ⟨ḡ(t), x∗ − x̄(t)⟩+ ηt
2
∥ḡ(t)∥2 + 1

2ηt
∥x̄(t)− x̄(t+ 1)∥2

≤ ⟨ḡ(t), x∗ − x̄(t)⟩+ ηtG
2

2
+

1

2ηt
∥x̄(t)− x̄(t+ 1)∥2,

while for the quantity ⟨ḡ(t), x∗ − x̄(t)⟩, we have

⟨ḡ(t), x∗ − x̄(t)⟩ = 1

N

N∑
i=1

⟨gi(t), x∗ − xi(t)⟩+
1

N

N∑
i=1

⟨gi(t), xi(t)− x̄(t)⟩

≤ 1

N

N∑
i=1

(fi(x
∗)− fi(xi(t))) +

1

N

N∑
i=1

∥gi(t)∥∥xi(t)− x̄(t)∥

≤ f(x∗)− f(x̄(t)) +
1

N

N∑
i=1

|fi(x̄(t))− fi(xi(t))|+
G

N

N∑
i=1

∥xi(t)− x̄(t)∥

≤ f(x∗)− f(x̄(t)) +
2G

N

N∑
i=1

∥xi(t)− x̄(t)∥ ≤ f(x∗)− f(x̄(t)) +
2G√
N
∥E(t)∥F .

Combining the above derivations, it can be shown that

ηt(f(x̄(t))− f(x∗)) ≤ 1

2

(
∥x̄(t)− x∗∥2 − ∥x̄(t+ 1)− x∗∥2

)
+

η2tG
2

2
+

2G√
N

ηt∥E(t)∥F .

and by taking the telescoping sum and using the results of Exercise 3.4, we get∑t−1
τ=0 ητ (f(x̄(τ))− f(x∗))∑t−1

τ=0 ητ
≤
∥x̄(0)− x∗∥2 +G2

(
4

1−σ + 1
)∑t−1

τ=0 η
2
τ

2
∑t−1

τ=0 ητ
.

The following theorem summarizes the convergence results of the decentralized subgradient de-

scent method.

Theorem 3.3. Suppose each fi : Rd → R is convex and G-Lipschitz continuous, and suppose

each agent starts from the same initial point xi(0) = x0.

1. Suppose a constant step size ηt = η is chosen for the decentralized subgradient descent method.

Then we have
1

t

t−1∑
τ=0

(f(x̄(τ))− f(x∗)) ≤ ∥x0 − x∗∥2

ηt
+

5ηG2

1− σ
,

and

1

N

N∑
i=1

∥xi(t)− x̄(t)∥2 ≤ η2G2

(1− σ)2
.

77

2. Suppose we choose diminishing step sizes ηt ∝ 1/
√
t+ 1. Then

min
τ=0,...,t−1

(f(x̄(τ))− f(x∗)) ≤ O

(
ln t√
t

)
,

and

1

N

N∑
i=1

∥xi(t)− x̄(t)∥2 ≤ O

(
1

t

)
.

Decentralized stochastic gradient descent. Just as the name suggests, the decentralized

stochastic gradient descent (DSGD) method applies to consensus optimization problems where

only stochastic gradients of local cost functions can be accessed. The iterations of DSGD are

given by

xi(t+ 1) =

N∑
i=1

Wijxj(t)− ηtgi(t),

where gi(t) in this time is a stochastic gradient of fi that satisfies E[gi(t)|xi(t)] = ∇fi(xi(t)).

DSGD also admits diffusion variants.

We leave convergence analysis of DSGD to the interested readers.

Notes on References

The decentralized gradient descent method can date back to the 1980s [Tsitsiklis et al., 1986];

this pioneering work proposed the fundamental framework of DGD and its variants, and also

established preliminary almost sure convergence guarantees. One of the standard references on

the decentralized gradient descent method is the seminal work [Nedić and Ozdaglar, 2009], but it

considered possibly nonsmooth convex cost functions and time-varying communication networks.

The Master’s thesis [Chen, 2012] is also an important early work on DGD and its extensions. The

diffusion method for consensus optimization was introduced in [Chen and Sayed, 2012], and the

work [Sayed, 2014] provided a relatively comprehensive account of the diffusion method. The pa-

per [Yuan et al., 2016] established convergence results of DGD with constant step sizes. The two

recent works [Choi and Kim, 2022,Choi, 2023] established that DGD for strongly convex objec-

tives with diminishing step sizes ηt ∝ µ/(t+ t0) achieves convergence rate ∥x̄(t)− x∗∥ ≤ O(1/t).

Some related works on decentralized stochastic gradient descent include [Ram et al., 2010],

[Jakovetic et al., 2018], [Yuan et al., 2019], etc.; see also the references therein.

Lemma 3.2 was adapted from [Qu and Li, 2018]. The materials of Section 3.4 are mostly

based on the results in [Yuan et al., 2016].

Bibliography

[Chen, 2012] Chen, I.-A. (2012). Fast distributed first-order methods. Master’s thesis, Mas-

sachusetts Institute of Technology.

78

[Chen and Sayed, 2012] Chen, J. and Sayed, A. H. (2012). Diffusion adaptation strategies for

distributed optimization and learning over networks. IEEE Transactions on Signal Processing,

60(8):4289–4305.

[Choi, 2023] Choi, W. (2023). A tight bound on the stepsize of the decentralized gradient descent.

arXiv preprint arXiv:2303.05755.

[Choi and Kim, 2022] Choi, W. and Kim, J. (2022). On the convergence of decentralized gradient

descent with diminishing stepsize, revisited. arXiv preprint arXiv:2203.09079.

[Jakovetic et al., 2018] Jakovetic, D., Bajovic, D., Sahu, A. K., and Kar, S. (2018). Convergence

rates for distributed stochastic optimization over random networks. In Proceedings of the 57th

IEEE Conference on Decision and Control (CDC), pages 4238–4245.

[Jakovetic et al., 2011] Jakovetic, D., Xavier, J., and Moura, J. M. (2011). Fast distributed

gradient methods. Available at https://arxiv.org/abs/1112.2972v3.

[Nedić and Ozdaglar, 2009] Nedić, A. and Ozdaglar, A. (2009). Distributed subgradient methods

for multi-agent optimization. IEEE Transactions on Automatic Control, 54(1):48–61.

[Qu and Li, 2018] Qu, G. and Li, N. (2018). Harnessing smoothness to accelerate distributed

optimization. IEEE Transactions on Control of Network Systems, 5(3):1245–1260.

[Ram et al., 2010] Ram, S. S., Nedić, A., and Veeravalli, V. V. (2010). Distributed stochastic

subgradient projection algorithms for convex optimization. Journal of Optimization Theory

and Applications, 147(3):516–545.

[Sayed, 2014] Sayed, A. H. (2014). Adaptation, learning, and optimization over networks. Foun-

dations and Trends® in Machine Learning, 7(4-5):311–801.

[Tsitsiklis et al., 1986] Tsitsiklis, J., Bertsekas, D., and Athans, M. (1986). Distributed asyn-

chronous deterministic and stochastic gradient optimization algorithms. IEEE Transactions

on Automatic Control, 31(9):803–812.

[Yuan et al., 2019] Yuan, K., Alghunaim, S. A., Ying, B., and Sayed, A. H. (2019). On the

performance of exact diffusion over adaptive networks. In Proceedings of the 58th IEEE Con-

ference on Decision and Control (CDC), pages 4898–4903.

[Yuan et al., 2016] Yuan, K., Ling, Q., and Yin, W. (2016). On the convergence of decentralized

gradient descent. SIAM Journal on Optimization, 26(3):1835–1854.

79

Chapter 4

Gradient Tracking for Distributed

Optimization

4.1 Motivation and the Algorithm

In the last chapter, we have presented and discussed the decentralized gradient descent method,

one of the most fundamental algorithms in the area of distributed optimization. The DGD

method is relatively straightforward to implement and has convergence guarantees. However,

as we have seen, there are gaps between DGD and the centralized gradient descent in terms

of the convergence rate guarantees. The most notable gap is in the convergence rate when

the objective function is smooth (see Table 4.1). Also, the convergence of DGD also requires

some additional conditions. Since about 2015, there have been multiple works proposing novel

distributed optimization algorithms that attempt to address these issues, and the focus of this

chapter is to introduce some of these distributed algorithms.

Convex Convex & smooth
Strongly convex

& smooth

Rate Complexity Rate Complexity Rate Complexity

Centralized

(sub)GD
O

(
ln t√
t

)
O

(
1

ϵ2

)
O

(
1

t

)
O

(
1

ϵ

)
O
(
(1− cκ)t

)
O

(
κ ln

1

ϵ

)
DGD O

(
ln t√
t

)
O

(
1

ϵ2

)
O

(
ln t

t2/3

)
O

(
1

ϵ3/2

)
O

(
1

t2

)
O

(
1√
ϵ

)
Table 4.1: Comparison of the convergence rates and complexities of DGD and the centralized

gradient descent method. The convergence rates and complexities are evaluated in terms of

min0≤τ≤t−1 f(x̄(τ))− f(x∗).

In order to address the aforementioned issues, let’s first see what intuitively causes the slow

80

convergence of DGD. We have seen that for DGD, the averaged iterate x̄(t) satisfies

x̄(t+ 1) = x̄(t)− ηt
1

N

N∑
i=1

∇fi(xi(t)),

and when all xi(t) are close to each other, i.e., approximate consensus has been reached, we

have 1
N

∑N
i=1∇fi(xi(t)) ≈ ∇f(x̄(t)), and therefore x̄(t) evolves just like centralized gradient

descent with time-varying step sizes ηt. Recall that in Chapter 1, all convergence rate results

for (deterministic) gradient descent were derived with a constant positive step size. Therefore,

in order for DGD to achieve comparable convergence rates with centralized GD, the step size ηt
need to have a positive lower bound throughout the iterations (see also Exercise 4.1). However,

as we have seen, if the step size ηt has a positive lower bound, then X∗ = 1x∗T in general will not

be a fixed point of the DGD iteration X(t+ 1) = WX(t)− ηt∇F (X(t)). This dilemma forces us

to either give up accurate convergence to the optimal solution, or to use diminishing step sizes

that result in slower convergence.

Note the above observations also suggest a potential direction for addressing the issue of slow

convergence of DGD: If we can design the distributed optimization iteration so that

i) x̄(t+ 1)− x̄(t)− η∇f(x̄(t)) approaches zero sufficiently fast, where η is a constant step size;

and

ii) X∗ = 1x∗T is a fixed point of the iteration,

then the resulting algorithm should be more likely to achieve comparable convergence rates with

centralized gradient descent.

Exercise 4.1. Suppose f : Rd → R is µ-strongly convex and L-smooth, and let x∗ be the

minimizer of f over Rd. Consider the (centralized) gradient descent iteration

x(t+ 1) = x(t)− ηt∇f(x(t)).

1. Show that

∥x(t+ 1)− x∗∥ ≥ (1− ηtL)∥x(t)− x∗∥.

2. Suppose limt→∞ ηt = 0, and x(0) ̸= x∗. Show that for any δ ∈ (0, 1), there exists

T ∈ N such that for any t ≥ T , ∥x(t + 1) − x∗∥ ≥ δ∥x(t) − x∗∥. Consequently, the

gradient descent method does not achieve linear convergence.

In this chapter, we first introduce the gradient tracking algorithm for distributed optimization.

The intuition behind the gradient tracking algorithm is to introduce an auxiliary local variable

gi(t) that serves as a local estimate of the global gradient. Specifically, the gradient tracking

81

algorithm is given by1

xi(t+ 1) =

N∑
i=1

Wij xj(t)− η gi(t) (4.1a)

gi(t+ 1) =

N∑
i=1

Wij gj(t) +∇fi(xi(t+ 1))−∇fi(xi(t)), (4.1b)

with the initialization gi(0) = ∇fi(xi(0)). If we introduce the notations

X(t) =

— x1(t)

T —
...

— xN (t)T —

 , G(t) =

— g1(t)

T —
...

— gN (t)T —

 ,

then it’s not hard to see that the gradient tracking iterations can be compactly written as

X(t+ 1) = WX(t)− ηG(t),

G(t+ 1) = WG(t) +∇F (X(t+ 1))−∇F (X(t)), G(0) = ∇F (X(0)).
(4.2)

Note that in the gradient tracking algorithm (4.1), each agent needs to exchange two vectors of

dimension d with its neighbors for each iteration.

Exercise 4.2. Consider the gradient tracking algorithm (4.1).

1. Show that

1

N

N∑
i=1

gi(t) =
1

N

N∑
i=1

∇fi(xi(t)) and x̄(t+ 1) = x̄(t)− η

N∑
i=1

∇fi(xi(t))

for all t ∈ N, where x̄(t) := 1
N

∑N
i=1 xi(t).

2. Let x∗ be a minimizer of f over Rd. Find a fixed point of the gradient tracking

iteration (4.2).

We now provide some intuitive explanations of why gi(t) can serve as a local estimate of the

global gradient ∇f(x̄(t)):

1This version in the lecture notes is adopted from [Qu and Li, 2018,Nedić et al., 2017]. The gradient tracking

method also has “diffusion” variants, one of which is given by

xi(t+ 1) =
∑N

j=1
Wij(xj(t)− η gj(t)),

gi(t+ 1) =
∑N

j=1
Wij(gj(t) +∇fj(xj(t+ 1))−∇fj(xj(t))).

See [Di Lorenzo and Scutari, 2016,Xu et al., 2015] for more details.

82

1. As Exercise 4.2 shows, we have 1
N

∑N
i=1 gi(t) = 1

N

∑N
i=1∇fi(xi(t)). Therefore, if all xi(t)

and gi(t) have reached approximate consensus, then

gi(t) ≈
1

N

N∑
i=1

gi(t) =
1

N

N∑
i=1

∇fi(xi(t)) ≈
1

N

N∑
i=1

∇fi(x̄(t)) = ∇f(x̄(t)),

i.e., gi(t) approximates the global gradient ∇f(x̄(t)).

2. The above derivation requires that xi(t) and gi(t) have reached approximate consensus.

From (4.1), it can be seen that, when x̄(t) approaches x∗, as long as gi(t) approximates

the true gradient ∇f(x̄(t)), the increment −ηgi(t) in (4.1a) will be very small, which then

has little effects on the consensus procedure on xi(t) in (4.1a). Additionally, if all xi(t) have

also reached approximate consensus, xi(t + 1) − xi(t) will be small, and then the smooth-

ness of fi implies that ∇fi(xi(t+1))−∇fi(xi(t)) will be small, meaning that the increment

∇fi(xi(t + 1)) − ∇fi(xi(t)) in (4.1b) will have little effects on the consensus procedure on

gi(t). As a result, both xi(t) and gi(t) will reach consensus.

The above explanations seem to fall into circular reasoning. Nevertheless, we shall see in our

theoretical analysis how the above intuitions can be justified rigorously.

4.2 Convergence Analysis: The Smooth and Strongly Con-

vex Case

For analysis purposes, we introduce the notations

x̄(t) :=
1

N

N∑
i=1

xi(t), ḡ(t) :=
1

N

N∑
i=1

gi(t).

We also use Ex(t) and Eg(t) to denote the consensus errors:

Ex(t) :=

(x1(t)− x̄(t))T

...

(xN (t)− x̄(t))T

 =

(
I − 1

N
11T

)
X(t),

Eg(t) :=

(g1(t)− ḡ(t))T

...

(gN (t)− ḡ(t))T

 =

(
I − 1

N
11T

)
G(t).

As Exercise 4.2 shows, we have

ḡ(t) =
1

N

N∑
i=1

∇fi(xi(t)),

and

x̄(t+ 1) = x̄(t)− ηḡ(t) = x̄(t)− η
1

N

N∑
i=1

∇fi(xi(t)).

83

For analysis purposes, we impose the condition ηL ≤ 1 on the constant step size η. We shall see

that a stronger condition will be imposed on η for establishing convergence.

We first derive a bound on ∥ḡ(t)−∇f(x̄(t))∥ that will be useful in subsequent analysis.

∥ḡ(t)−∇f(x̄(t))∥ =

∥∥∥∥∥ 1

N

N∑
i=1

(∇fi(xi(t))−∇fi(x̄(t)))

∥∥∥∥∥
≤ 1

N

N∑
i=1

∥∇fi(xi(t))−∇fi(x̄(t))∥

≤ L

N

N∑
i=1

∥xi(t)− x̄(t)∥ ≤ L√
N
∥Ex(t)∥F .

(4.3)

To begin our analysis, we first consider the evolution of the consensus errors ∥Ex(t)∥F and

∥Eg(t)∥F . We have

∥Ex(t+ 1)∥F =

∥∥∥∥(I − 1

N
11T

)
(WX(t)− ηG(t))

∥∥∥∥
F

=

∥∥∥∥(W − 1

N
11T

)
X(t)− η

(
I − 1

N
11T

)
G(t)

∥∥∥∥
F

=

∥∥∥∥(W − 1

N
11T

)
Ex(t)− ηEg(t)

∥∥∥∥
F

≤
∥∥∥∥(W − 1

N
11T

)
Ex(t)

∥∥∥∥
F

+ η ∥Eg(t)∥F

≤ σ∥Ex(t)∥F + η∥Eg(t)∥F .

While for Eg(t), we have

∥Eg(t+ 1)∥F =

∥∥∥∥(I − 1

N
11T

)(
WG(t) +∇F (X(t+ 1))−∇F (X(t))

)∥∥∥∥
F

=

∥∥∥∥(W − 1

N
11T

)
Eg(t) +

(
I − 1

N
11T

)(
∇F (X(t+ 1))−∇F (X(t))

)∥∥∥∥
F

≤
∥∥∥∥(W − 1

N
11T

)
Eg(t)

∥∥∥∥
F

+

∥∥∥∥(I − 1

N
11T

)(
∇F (X(t+ 1))−∇F (X(t))

)∥∥∥∥
F

≤ σ∥Eg(t)∥F + ∥∇F (X(t+ 1))−∇F (X(t))∥F ,

where we used
∥∥I − 1

N 11T
∥∥
2
= 1. Note that

∥∇F (X(t+ 1))−∇F (X(t))∥F
≤ L∥X(t+ 1)− X(t)∥F = L ∥(W − I)X(t)− ηG(t)∥F
= L ∥(W − I)Ex(t)− ηG(t)∥F ≤ L ∥(W − I)Ex(t)∥F + ηL∥G(t)∥F
≤ 2L∥Ex(t)∥F + ηL∥G(t)∥F ,

84

and to bound ∥G(t)∥F , we have

∥G(t)∥F = ∥1 · ∇f(x̄(t))T + 1(ḡ(t)−∇f(x̄(t))T + Eg(t)∥F
≤ ∥1 · ∇f(x̄(t))T∥F +

∥∥1(ḡ(t)−∇f(x̄(t))T∥∥
F
+ ∥Eg(t)∥F

=
√
N∥∇f(x̄(t))−∇f(x∗)∥+

√
N ∥ḡ(t)−∇f(x̄(t))∥+ ∥Eg(t)∥F

≤
√
NL∥x̄(t)− x∗∥+ L∥Ex(t)∥F + ∥Eg(t)∥F .

Therefore,

∥Eg(t+ 1)∥F ≤ (σ + ηL)∥Eg(t)∥F + (2 + ηL)L∥Ex(t)∥F + ηL2
√
N∥x̄(t)− x∗∥

≤ (σ + ηL)∥Eg(t)∥F + 3L∥Ex(t)∥F + ηL2
√
N∥x̄(t)− x∗∥

Finally, regarding the quantity ∥x̄(t)− x∗∥, we have

∥x̄(t+ 1)− x∗∥ = ∥x̄(t)− ηḡ(t)− x∗∥ ≤ ∥x̄(t)− η∇f(x̄(t))− x∗∥+ ∥η∇f(x̄(t))− ηḡ(t)∥

≤ (1− ηµ)∥x̄(t)− x∗∥+ ηL√
N
∥Ex(t)∥F ,

where in the first inequality we used Theorem 1.4 and the fact that |ηL−1| ≤ 1−ηµ for η ≤ 1/L.

Summarizing the previous results, we obtain the following inequalities:

1. ∥Ex(t+ 1)∥F ≤ σ∥Ex(t)∥F + η∥Eg(t)∥F .

2. ∥Eg(t+ 1)∥F ≤ (σ + ηL)∥Eg(t)∥F + 3L∥Ex(t)∥F + ηL2
√
N∥x̄(t)− x∗∥.

3. ∥x̄(t+ 1)− x∗∥ ≤ (1− ηµ)∥x̄(t)− x∗∥+ ηL
√
N
∥Ex(t)∥F .

In fact, these inequalities can be regarded as rigorous and precise formulations of the intuitive

explanations given in the last section.

We may rewrite the three inequalities in the following compact form: L−1∥Eg(t+ 1)∥F
∥Ex(t+ 1)∥F√

N∥x̄(t+ 1)− x∗∥

 ≤
σ + ηL 3 ηL

ηL σ 0

0 ηL 1− ηµ

 L−1∥Eg(t)∥F

∥Ex(t)∥F√
N∥x̄(t)− x∗∥

 , (4.4)

where the inequality is componentwise. Denote

M(ϵ) :=

σ + ϵ 3 ϵ

ϵ σ 0

0 ϵ 1− κϵ

 .

Since all relevant entries in (4.4) are nonnegative, we can apply mathematical induction and get L−1∥Eg(t)∥F
∥Ex(t)∥F√

N∥x̄(t)− x∗∥

 ≤M(ηL)t

 L−1∥Eg(0)∥F
∥Ex(0)∥F√

N∥x̄(0)− x∗∥

 . (4.5)

The following lemmas help us handle the power of M(ηL) by noticing that it is a nonnegative

matrix satisfying the conditions of the Perron-Frobenius Theorem 2.2.

85

Lemma 4.1. For any ϵ ∈ (0, 1], there exist u(ϵ), v(ϵ) ∈ R3 such that

lim
t→∞

(
M(ϵ)

ρ(M(ϵ))

)t

=
u(ϵ)v(ϵ)T

u(ϵ)Tv(ϵ)
. (4.6)

Proof. It’s not hard to check that for any ϵ ∈ (0, 1], the matrix M(ϵ) satisfies the conditions of

the Perron-Frobenius Theorem 2.2. Thus ρ(M(ϵ)) is a simple eigenvalue of M(ϵ), and all other

eigenvalues of M(ϵ) has magnitudes strictly less than ρ(M(ϵ)). Consequently, by letting u(ϵ) and

v(ϵ) be right and left eigenvectors of M(ϵ) associated with the eigenvalue ρ(M(ϵ)) respectively,

we can get (4.6); see [Horn and Johnson, 2013, Theorem 8.6.1], and similar results have also been

proved in Exercises 2.4 and 2.5.

It now becomes evident that we need to bound the spectral radius of M(ϵ) for ϵ ∈ (0, 1].

Lemma 4.2. Suppose ϵ ≤ 1. Then

ρ(M(ϵ)) ≤ max

{
1− κϵ

2
, σ + 5

√
ϵ

κ

}
.

Particularly, when ϵ ≤ κ
(
1−σ
6

)2
, we have ρ(M(ϵ)) = 1− κϵ

2 < 1.

Proof. First of all, we note that the matrix M(ϵ) has nonnegative entries and satisfies the

condition of the Perron-Frobenius Theorem 2.2 when η ≤ 1. Thus we can conclude that ρ(M(ϵ))

is an eigenvalue of M(ϵ), which further implies that it is the largest real root of the characteristic

polynomial of M(ϵ), which we temporarily denote by p(λ). Since the degree of p(λ) is 3, as long

as we find some λ ∈ R such that p(λ) ≥ 0 and p(λ) is increasing over λ ∈ (λ,+∞), we can then

conclude that λ is an upper bound of the largest real root of p(λ), and thus is an upper bound

of ρ(M(ϵ)).

The characteristic polynomial p(λ) is given by

p(λ) = det(λI −M(ϵ)) =

∣∣∣∣∣∣∣
λ− σ − ϵ −3 −ϵ
−ϵ λ− σ 0

0 −ϵ λ− (1− κϵ)

∣∣∣∣∣∣∣
= (λ− σ − ϵ)(λ− σ)(λ− (1− κϵ))− 3ϵ(λ− (1− κϵ))− ϵ3

= [(λ− σ − ϵ)(λ− σ)− 3ϵ](λ− (1− κϵ))− ϵ3

= (λ− λ+)(λ− λ−)(λ− (1− κϵ))− ϵ3,

where λ± are the two real roots of the equation (λ− σ − ϵ)(λ− σ)− 3ϵ = 0 and are given by

λ± = σ +
ϵ

2
±
√

3ϵ+
ϵ2

4
.

We can see that both of λ± are bounded above by

λ± ≤ σ +
√
ϵ

(√
ϵ

2
+

√
3 +

ϵ

4

)
≤ σ +

√
ϵ

(
1

2
+

√
3 +

1

4

)
< σ + 3

√
ϵ.

86

Therefore, p(λ) is increasing when λ > max{1 − κϵ, σ + 3
√
ϵ} ≥ max{1 − κϵ, λ+, λ−}. All we

need to do now is to find λ ≥ max{1− κϵ, σ + 3
√
ϵ} such that p(λ) ≥ 0.

We now claim that the choice

λ = max

{
1− κϵ

2
, σ + 5

√
ϵ

κ

}
does the work. Indeed, since both of λ± are less than σ + 3

√
ϵ, we have

p(λ) = (λ− λ+)(λ− λ−)(λ− (1− κϵ))− ϵ3

≥ (λ− σ − 3
√
ϵ)2(λ− (1− κϵ))− ϵ3

≥
(
5

√
ϵ

κ
− 3
√
ϵ

)2
(1− κϵ

2
− (1− κϵ))− ϵ3

=

[(
5√
κ
− 3

)2
κ

2
− ϵ

]
ϵ2 ≥

[(
5− 3√

κ

)2
κ

2
− ϵ

]
ϵ2 = (2− ϵ)ϵ2 > 0.

Our proof is now complete.

Combining the previous results, we see that, if we choose the step size η to satisfy

η ≤ κ

L

(
1− σ

6

)2

=
µ

L2

(
1− σ

6

)2

,

then ρ(M(ηL)) ≤ 1− ηµ
2 < 1, and from (4.5) we can get

1

ρ(M(ηL))t

 L−1∥Eg(t)∥F
∥Ex(t)∥F√

N∥x̄(t)− x∗∥

 ≤ (M(ηL)

ρ(M(ηL))

)t L−1∥Eg(0)∥F
∥Ex(0)∥F√

N∥x̄(0)− x∗∥

By taking the norm and letting t→∞, the right-hand side becomes∥∥∥∥∥∥∥

u(ηL)v(ηL)T

u(ηL)Tv(ηL)

 L−1∥Eg(0)∥F
∥Ex(0)∥F√

N∥x̄(0)− x∗∥

∥∥∥∥∥∥∥ ≤

∥∥∥∥∥∥∥
 L−1∥Eg(0)∥F

∥Ex(0)∥F√
N∥x̄(0)− x∗∥

∥∥∥∥∥∥∥ .

Therefore we can conclude that∥∥∥∥∥∥∥
 L−1∥Eg(t)∥F

∥Ex(t)∥F√
N∥x̄(t)− x∗∥

∥∥∥∥∥∥∥ ≤ O(ρ(M(ηL))t) ≤ O

((
1− ηµ

2

)t)
.

We summarize the convergence results of the gradient tracking algorithm 4.1 in the following

theorem.

Theorem 4.1. Suppose each fi : Rd → R is convex and L-smooth, and the global objective

function f is µ-strongly convex. Let the step size satisfy

η ≤ α
µ

L2

(
1− σ

6

)2
,

87

for some α ∈ (0, 1], and let xi(t), gi(t) be generated by the gradient tracking algorithm 4.1. Then

∥x̄(t) − x∗∥ and the consensus errors 1
N

∑N
i=1 ∥xi(t) − x̄(t)∥2, 1

N

∑N
i=1 ∥gi(t) − ∇f(x̄(t))∥2 all

achieve the linear convergence rate

O

[1− α

2

(
κ(1− σ)

6

)2]t .

4.3 Convergence Analysis: The Smooth and Convex Case

We now turn to the analysis of the gradient tracking algorithm 4.1 for smooth and convex

objective functions.

Recall that for the gradient tracking algorithm, we have

x̄(t+ 1) = x̄(t)− ηḡ(t) = x̄(t)− η
1

N

N∑
i=1

∇fi(xi(t)).

Therefore, Lemma 3.2 in Chapter 3 can be applied here, and from Lemma 3.2, we see that the

critical step is to derive an upper bound on the quantity
∑t−1

τ=0 ∥Ex(τ)∥2F . We therefore start

from the inequality

∥Ex(t+ 1)∥F ≤ σ∥Ex(t)∥F + η∥Eg(t)∥F

which has been derived in the last section. By taking the square and using the AM–GM inequality,

we get

∥Ex(t+ 1)∥2F ≤
(
1 +

(1− σ)(1 + 2σ)

2σ2

)
σ2∥Ex(t)∥2F +

(
1 +

2σ2

(1− σ)(1 + 2σ)

)
η2∥Eg(t)∥2F

=
1 + σ

2
∥Ex(t)∥2F + η2

1 + σ

(1− σ)(1 + 2σ)
∥Eg(t)∥2F

≤ 1 + σ

2
∥Ex(t)∥2F + η2

1

1− σ
∥Eg(t)∥2F ,

where we used (1+σ)/(1+ 2σ) ≤ 1 in the last step. Then for Eg(t), note that in the last section

we have shown

∥Eg(t+ 1)∥F ≤ σ∥Eg(t)∥F + ∥∇F (X(t+ 1))−∇F (X(t))∥F
≤ σ∥Eg(t)∥F + 2L∥Ex(t)∥F + ηL∥G(t)∥F .

This time we bound ∥G(t)∥F differently:

∥G(t)∥F =
∥∥1ḡ(t)T + Eg(t)

∥∥
F

≤ ∥1ḡ(t)∥F + ∥Eg(t)∥F =
√
N∥ḡ(t)∥+ ∥Eg(t)∥F .

As a result, if we impose the condition ηL ≤ (1− σ)/3 on the step size η, we get

∥Eg(t+ 1)∥F ≤ (σ + ηL) ∥Eg(t)∥F + 2L∥Ex(t)∥F + ηL
√
N∥ḡ(t)∥

≤ 1 + 2σ

3
∥Eg(t)∥F + 2L∥Ex(t)∥F + ηL

√
N∥ḡ(t)∥.

88

By taking the square and using the AM–GM inequality, we have

∥Eg(t+ 1)∥2F ≤
(
1 +

(1− σ)(7 + 8σ)

2(1 + 2σ)2

)(
1 + 2σ

3

)2

∥Eg(t)∥2F

+

(
1 +

2(1 + 2σ)2

(1− σ)(7 + 8σ)

)(
2L∥Ex(t)∥F + ηL

√
N∥ḡ(t)∥

)2
=

1 + σ

2
∥Eg(t)∥2F +

9(1 + σ)

(1− σ)(7 + 8σ)

(
2L∥Ex(t)∥F + ηL

√
N∥ḡ(t)∥

)2
≤ 1 + σ

2
∥Eg(t)∥2F +

3

2(1− σ)
(8L2∥Ex(t)∥2F + 2η2L2N∥ḡ(t)∥2),

where we used (1 + σ)/(7 + 8σ) < 3/2 for σ ∈ [0, 1]. Summarizing the previous results, we have

the following two inequalities:

∥Ex(t+ 1)∥2F ≤
1 + σ

2
∥Ex(t)∥2F +

η2

1− σ
∥Eg(t)∥2F ,

∥Eg(t+ 1)∥2F ≤
1 + σ

2
∥Eg(t)∥2F +

12L2

1− σ
∥Ex(t)∥2F +

3η2L2N

1− σ
∥ḡ(t)∥2.

Similarly, these two inequalities can be written in the following compact form: ∥Ex(t+ 1)∥2F
η

2
√
3L
∥Eg(t+ 1)∥2F

 ≤ P (ηL)

 ∥Ex(t)∥2F
η

2
√
3L
∥Eg(t)∥2F

+

√
3η3LN

2(1− σ)

[
0

∥ḡ(t)∥2

]
, (4.7)

where the inequality is componentwise, and we denote

P (ϵ) :=

1 + σ

2

2
√
3ϵ

1− σ

2
√
3ϵ

1− σ

1 + σ

2

 .

Here we deliberately scale ∥Eg(t)∥2F so that the matrix P (ηL) becomes real symmetric, which

simplifies the analysis of the spectrum of P (ϵ) as well as the asymptotic behavior of P (ϵ)t as

t→∞. Indeed, we have the following lemma:

Lemma 4.3. We have

∥P (ϵ)∥2 ≤
2 + σ

3

whenever 0 < ϵ ≤ ((1− σ)/5)2.

Proof. The two eigenvalues of P (ϵ) are explicitly given by

λ± =
1 + σ

2
± 2
√
3ϵ

1− σ
.

Then since P (ϵ) is real symmetric, the desired bound on ∥P (ϵ)∥2 then directly follows from

∥P (ϵ)∥2 ≤ λ+ and 0 < ϵ ≤ ((1− σ)/5)2.

We can now plug the bound derived in Lemma 4.3 into (4.7) to get∥∥∥∥∥∥
 ∥Ex(t+ 1)∥2F

η

2
√
3L
∥Eg(t+ 1)∥2F

∥∥∥∥∥∥ ≤ 2 + σ

3

∥∥∥∥∥∥
 ∥Ex(t)∥2F

η

2
√
3L
∥Eg(t)∥2F

∥∥∥∥∥∥+
√
3η3LN

2(1− σ)
∥ḡ(t)∥2,

89

assuming that ηL ≤ ((1− σ)/5)2. By using mathematical induction, we then obtain∥∥∥∥∥∥
 ∥Ex(t)∥2F

η

2
√
3L
∥Eg(t)∥2F

∥∥∥∥∥∥ ≤
(
2 + σ

3

)t
NE2

0 +

√
3η3LN

2(1− σ)

t−1∑
τ=0

(
2 + σ

3

)t−1−τ

∥ḡ(τ)∥2,

where we denote

E0 :=

√
1

N

(
∥Ex(0)∥2F +

η

2
√
3L
∥Eg(0)∥2F

)
,

and used the fact that the ℓ2-norm of a vector in Rn is less than or equal to its ℓ1-norm. By

summing over t, we have

t−1∑
τ=0

∥Ex(τ)∥2F ≤ NE2
0

t−1∑
τ=0

(
2 + σ

3

)τ
+

√
3η3LN

2(1− σ)

t−1∑
τ=0

τ−1∑
s=0

(
2 + σ

3

)τ−1−s

∥ḡ(s)∥2.

Note that the second term on the right-hand side can be bounded by interchanging the two

summations:

t−1∑
τ=0

τ−1∑
s=0

(
2 + σ

3

)τ−1−s

∥ḡ(s)∥2 =
t−2∑
s=0

∥ḡ(s)∥2
t−1∑

τ=s+1

(
2 + σ

3

)τ−1−s

≤
t−2∑
s=0

∥ḡ(s)∥2
∞∑

τ=s+1

(
2 + σ

3

)τ−1−s

≤ 3

1− σ

t−1∑
τ=0

∥ḡ(τ)∥2.

Therefore
t−1∑
τ=0

∥Ex(τ)∥2F ≤
3NE2

0

1− σ
+

3
√
3η3LN

2(1− σ)2

t−1∑
τ=0

∥ḡ(τ)∥2.

Recall that when the step size is constant, Lemma 3.2 gives

1

t

t∑
τ=1

(f(x̄(τ))− f(x∗)) ≤ ∥x̄(0)− x∗∥2

2ηt
+

L

2Nt

t−1∑
τ=0

∥E(τ)∥2F +
(ηL−1)

∑t−1
τ=0 ∥x̄(τ+1)−x̄(τ)∥2

2ηt
.

By plugging in the bound on
∑t−1

τ=0 ∥E(τ)∥2F and noting that ∥x̄(τ +1)− x̄(τ)∥2 = η2∥ḡ(τ)∥2, we
get

1

t

t∑
τ=1

(f(x̄(τ))− f(x∗)) ≤ 1

t

[
∥x̄(0)− x∗∥2

2η
+

3LE2
0

2(1− σ)
+

η

2

(
3
√
3(ηL)2

2(1− σ)2
+ηL−1

)
t−1∑
τ=0

∥ḡ(τ)∥2
]

≤ 1

t

[
∥x̄(0)− x∗∥2

2η
+

3LE2
0

2(1− σ)

]
,

(4.8)

where the last step follows because ηL ≤ ((1− σ)/5)2 implies 3
√
3(ηL)2

2(1−σ)2 +ηL−1 ≤ 0.

After deriving the convergence rate for f(x̄(t))− f(x∗), we proceed to bound the consensus

errors, which we leave as a series of exercises for the readers.

90

Exercise 4.3. Let (ct)t∈N be a sequence of nonnegative real numbers that satisfies
∑∞

t=0 ct <

+∞. Show that

lim
t→∞

(
t · min

0≤τ≤t−1
cτ

)
= 0.

In other words, we have

min
0≤τ≤t−1

cτ = o

(
1

t

)
as t→∞.

Exercise 4.4. 1. Suppose η satisfies ηL ≤ ((1− σ)/5)2. Show that

3
√
3(ηL)2

2(1− σ)2
+ηL− 1 < −4

5
.

This is a very loose bound, but suffices for subsequent derivations.

2. Show that
t−1∑
τ=0

∥ḡ(τ)∥2 ≤ 5

2η

[
∥x̄(0)− x∗∥2

2η
+

3LE2
0

2(1− σ)

]
.

(Hint: Use (4.8) and note that f(x)− f(x∗) ≥ 0 for any x ∈ Rd.)

3. Use the above result to derive a bound on
∑t−1

τ=0 ∥Ex(τ)∥2F .

4. Show that

min
τ=0,...,t−1

∥Ex(τ)∥2F ≤ o

(
1

t

)
.

We can now summarize the convergence results of gradient tracking for smooth and convex

objective functions in the following theorem:

Theorem 4.2. Suppose each fi : Rd → R is convex and L-smooth, and suppose x∗ ∈ Rd is a

minimizer of f over Rd. Let xi(t), t ≥ 0 be generated by the gradient tracking algorithm 4.1 with

step size η satisfying

η =
α

L

(
1− σ

5

)2

for α ∈ (0, 1]. Then

1

t

t∑
τ=1

(f(x̄(τ))− f(x∗)) ≤ 1

t

[
25L∥x̄(0)− x∗∥2

2α(1− σ)2
+

3LE2
0

2(1− σ)

]
,

and

min
τ=0,...,t−1

1

N

N∑
i=1

∥xi(τ)− x̄(τ)∥2 ≤ o

(
1

t

)
,

91

where x̄(t) = 1
N

∑N
i=1 xi(t), and

E0 =

√√√√ 1

N

∑N

i=1

(
∥xi(0)− x̄(0)∥2 + η

2
√
3L

∥∥∥∥∇fi(xi(0))−
1

N

∑N

j=1
∇fj(xj(0))

∥∥∥∥2
)
.

Summary of the Convergence and Complexity Results

The main convergence rate results derived above can be summarized as follows:

• Convex & smooth:
1

t

t∑
τ=1

(f(x̄(τ))− f(x∗)) ≤ O

(
1

(1− σ)2t

)
.

• Strongly convex & smooth:

f(x̄(t))− f(x∗) ≤ O
([

1− cκ2(1−σ)2
]t)

,

where c > 0 is a numerical constant, and κ = µ/L is the reciprocal condition number.

From these convergence rate results, we can further derive the iteration complexities of the

gradient tracking algorithm (4.1):

• Convex & smooth: The number of iterations T to achieve 1
T

∑T
τ=1(f(x̄(τ)) − f(x∗)) ≤ ϵ is

bounded by

O

(
1

(1− σ)2ϵ
.

)
• Strongly convex & smooth: The number of iterations T to achieve f(x̄(T)) − f(x∗)) ≤ ϵ is

bounded by

O

(
1

κ2(1− σ)2
ln

1

ϵ

)
.

We can see that, the convergence rates as well as the iteration complexity bounds now match

those of the centralized gradient descent method, in terms of the dependencies on t and ϵ,

respectively. On the other hand, there is still room for improvement:

1. The iteration complexities of the gradient tracking algorithm (4.1) now scale with the net-

work’s topology asO((1−σ)−2). Compared to DGD and the consensus method for distributed

averaging, the scalability of the gradient tracking algorithm (4.1) seems to be worse.

2. For strongly convex and smooth objective functions, our analysis shows that the iteration

complexity of the gradient tracking algorithm (4.1) scales with the condition number as

O(κ−2), which is worse than the centralized gradient descent method O(κ−1).

3. The gradient tracking algorithm (4.1) is based on the vanilla gradient descent method. It

is expected that, by incorporating Nesterov’s acceleration in the design of our distributed

optimization algorithm, we can achieve faster convergence and lower complexities.

92

4.4 Other Gradient-Tracking-Type Distributed Optimiza-

tion Algorithms

In this section, we present some other distributed optimization algorithms that employ constant

step sizes and achieve theoretical convergence rates comparable to their centralized counterpart.

• EXTRA: EXTRA (short for exact first-order algorithm) [Shi et al., 2015a] is perhaps the first

distributed optimization algorithm that bridges the gap in the convergence rates compared

to the centralized counterpart. The iterations of EXTRA are given by

xi(t+ 2) = xi(t+ 1) +

N∑
j=1

Wijxj(t+ 1)−
N∑
j=1

W̃ijxj(t)− η(∇fi(xi(t+ 1))−∇fi(xi(t))),

or, written compactly,

X(t+ 2) = (I +W)X(t+ 1)− W̃X(t)− η(∇F (X(t+ 1))−∇F (X(t))).

Here W, W̃ ∈ RN×N are two real symmetric weight matrices that satisfy

1. null(I − W̃) ⊇ null(W − W̃) = span{1}, and
2. W̃ ≻ 0 and W ⪯ W̃ ⪯ (I +W)/2.

A common choice for W̃ is W̃ = (I+W)/2, and in this case the above two conditions reduce

to −I ≺ W ⪯ I and null(I −W) = span{1}, which will be satisfied if W is a Metropolis

weight matrix.

• Exact diffusion/NIDS: The paper [Yuan et al., 2019a] proposes the exact diffusion algorithm,

while the paper [Li et al., 2019] proposed the NIDS (short for network independent step-size)

algorithm. The two algorithms coincide when the communication graph is undirected and

the local cost functions are all smooth:

xi(t+ 2) =

N∑
j=1

W ij(2xj(t+ 1)− xj(t)− η(∇fj(xj(t+ 1))−∇fj(xj(t))),)

or

X(t+ 2) = W (2X(t+ 1)− X(t)− η(∇F (X(t+ 1))−∇F (X(t))),

where W = (I + W)/2 and W is a real symmetric weight matrix satisfying W1 = 1 and∥∥W − 1
N 11T

∥∥
2
< 1.

Exact diffusion/NIDS can be regarded as a diffusion variant of EXTRA with W̃ = (I+W)/2.

In addition, both exact diffusion/NIDS and EXTRA only require one round of communication

between agents per iteration.

The following theorem provides the convergence results of exact diffusion/NIDS for strongly

convex and smooth local objectives:

Theorem 4.3 ([Xu et al., 2021]). Let W ∈ RN×N be a real symmetric weight matrix satisfying

W1 = 1 and σ =
∥∥W − 1

N 11T
∥∥
2
< 1. Suppose each local cost function fi is µ-strongly convex

93

and L-smooth. Then by choosing the step size to be

η =
2

L+ µ
,

the exact diffusion/NIDS algorithm achieves the convergence rate

1

N

N∑
i=1

∥xi(t)− x∗∥2 ≤ O

[max

{(
L− µ

L+ µ

)2

,
1 + σ

2

}]t .

As a corollary, the iteration complexity of exact diffusion/NIDS for strongly convex and

smooth local cost functions is given by

O

(
max

{
1

κ
,

1

1− σ

}
ln

1

ϵ

)
,

where κ = µ/L. The convergence rate of exact diffusion/NIDS for convex and smooth local cost

functions can also be found in [Xu et al., 2021], which we omit here.

A Primal-Dual Perspective of Gradient-Tracking-Type Algorithms

In Section 3.4, we have seen that DGD with constant step sizes can be viewed as doing gradient

descent for minimizing certain cost function. In this subsection, we present a similar perspective

for grading-tracking-type algorithms.

Assume throughout this subsection that W ∈ RN×N is real symmetric and positive semidefi-

nite, and satisfies σ := ∥W − 1
N 11T∥2 < 1. Recall that the optimization problem for the analysis

of DGD is

min
X∈RN×d

F (X) +
1

2η
∥X∥2I−W ,

where F (X) =
∑N

i=1 fi(xi) with xT
i being the i’th column of X, and ∥X∥2I−W = tr(XT(I −W)X).

We see that 1
2η∥X∥

2
I−W can be viewed as a smooth penalty function that drives X to consensus.

However, this penalty function does not result in optimal solutions that have strictly reached

consensus. One commonly used approach to remedy this issue is to consider the augmented

Lagrangian

Lα(X,Y) = F (X) +
1

α
⟨Y, UX⟩+ 1

2α
∥X∥2V ,

which is the Lagrangian function corresponding to the following constrained optimization prob-

lem:

min
X∈Rd

F (X) +
1

2α
∥X∥2V

s.t. α−1UX = 0.

Here U and V are matrices satisfying nullU = nullV = span{1}, V is positive semidefinite,

and ∥X∥V :=
√

tr(XTV X) is the seminorm associated with V . We then apply the primal-dual

gradient method (or one of its variants) to find a saddle point of the augmented Lagrangian

Lα(X,Y), in the hope that the resulting algorithm can be implemented in a distributed fashion,

and will converge to an optimal solution with good performance.

94

Exercise 4.5. Suppose A ∈ RN×N is real symmetric and satisfies 0 ⪯ A ⪯ I. Let

A =

N∑
i=1

λiuiu
T
i

be the eigenvalue decomposition of A, where {ui : i = 1, . . . , n} forms an orthonormal

basis of RN . Given any function f : [0, 1]→ R, we define

f(A) =

N∑
i=1

f(λi)uiu
T
i .

1. Suppose f(x) = 0 if and only if x = 0. Prove that null f(A) = nullA.

2. Suppose f(x) > 0 for all x ∈ [0, 1]. Prove that f(A) is positive definite.

3. Let W ∈ RN×N be a real symmetric matrix satisfying W1 = 1 and
∥∥W− 1

N 11T
∥∥
2
< 1.

Show that

null(I −W) = null
√
I −W = null(I −W 2) = span{1}.

At first glance, the above primal-dual perspective does not seem to be quite related to the

gradient-tracking algorithms we have presented. So next we show how we can derive those

gradient-tracking-type algorithms from this perspective.

1. Let U = I −W and V = I −W 2. We then have

∇XLα(X,Y) = ∇F (X) +
1

α
(I −W)Y +

1

α
(I −W 2)X,

∇YLα(X,Y) =
1

α
(I −W)X.

Therefore, if we apply the Gauss-Seidel variant of the primal-dual gradient method to the

augmented Lagrangian

X(t+ 1) = X(t)− η∇XLα(X(t),Y(t))

Y(t+ 1) = Y(t) + η∇YLα(X(t+ 1),Y(t))
(4.9)

with step size η = α, we get the iterations

X(t+ 1) = W 2X(t)− η∇F (X(t))− (I −W)Y(t),

Y(t+ 1) = Y(t) + (I −W)X(t+ 1).

The above iterations do not appear familiar to us at first glance. However, we notice that

the second equality implies WX(t+1)+Y (t+1) = Y(t)+X(t+1), and by plugging the first

equality into the right-hand side, we get

WX(t+ 1) + Y(t+ 1) = W (WX(t) + Y(t))− η∇F (X(t)).

95

As a result, if we initialize Y(0) by Y(0) = −WX(0), we have

WX(t) + Y(t) = −η
t−1∑
τ=0

W t−1−τ∇F (X(τ)),

and by multiplying the above equality with I −W , we get

(I −W)(WX(t) + Y(t))

= η

t−1∑
τ=0

W t−τ∇F (X(τ))− η

t−1∑
τ=0

W t−1−τ∇F (X(τ))

= η

t−1∑
τ=0

W t−τ∇F (X(τ))− η

t∑
τ=1

W t−τ∇F (X(τ − 1))

= η

[
−∇F (X(t− 1)) +

t−1∑
τ=1

W t−τ (∇F (X(τ))−∇F (X(τ − 1))) +W t∇F (X(0))

]
.

Therefore, if we define

G(t) = ∇F (X(t)) +
1

η
(I −W)(WX(t) + Y(t)),

then we will get

G(t) =
t∑

τ=1

W t−τ (∇F (X(τ))−∇F (X(τ − 1)) +W t∇F (X(0)),

from which we can see that G(t) is just generated by the iteration (4.1b) with G(0) =

∇F (X(0)). Moreover,

X(t+ 1) = W 2X(t)− η

(
G(t)− 1

η
(I −W)(WX(t) + Y(t))

)
− (I −W)Y(t),

= WX(t)− ηG(t),

which coincides with (4.1a). We see that we have just recovered the gradient tracking algo-

rithm (4.1).

Exercise 4.6. Consider the following augmented Lagrangian

Lα(X,Y) = F (X) +
1

α
⟨Y, (I −W)X⟩+ 1

2α
∥X∥22(I−W).

Show that, if we apply the vanilla primal-dual gradient method

X(t+ 1) = X(t)− η∇XLα(X(t),Y(t))

Y(t+ 1) = Y(t) + η∇YLα(X(t),Y(t))

with appropriate initialization, then we can also recover the gradient tracking algo-

rithm (4.1).

96

2. Let U =
√
W̃ −W and V = I−W̃ , where W and W̃ are two real symmetric weight matrices

satisfying the conditions of EXTRA. We then have

∇XLα(X,Y) = ∇F (X) +
1

α

√
W̃ −WY +

1

α
(I − W̃)X,

∇YLα(X,Y) =
1

α

√
W̃ −WX.

By applying the Gauss-Seidel variant of the primal-dual gradient method (4.9) with step size

η = α, we get

X(t+ 1) = W̃X(t)− η∇F (X(t))−
√
W̃ −WY(t)

Y(t+ 1) = Y(t) +
√
W̃ −WX(t+ 1).

We then try to eliminate the variable Y(t). Note that

X(t+ 2) = W̃X(t+ 1)− η∇F (X(t+ 1))−
√

W̃ −WY(t+ 1)

= WX(t+ 1)− η∇F (X(t+ 1))−
√
W̃ −WY(t).

By subtracting the updating rule of X(t+ 1) from the above equality, we get

X(t+ 2) = (I +W)X(t+ 1)− W̃X(t)− η(∇F (X(t+ 1))−∇F (X(t))),

which is just EXTRA.

Exercise 4.7. Suppose W ∈ RN×N is a real symmetric weight matrix satisfying

i) W1 = 1 and
∥∥W − 1

N 11T
∥∥
2
< 1;

ii) W ≻ 0.

Show that, the weight matrices W̃ = W
2
and W = 2W − I satisfy the conditions

of EXTRA. Furthermore, if we set X(1) = X(0) − η∇F (X(0)) in the corresponding

EXTRA, then the sequence (X(t))t≥0 generated by EXTRA coincides with the one

generated by the gradient tracking algorithm (4.1) with W as the weight matrix.

3. Let U =
√

(I −W)/2 and V = (I − W)/2, and this time we consider decomposing the

augmented Lagrangian as follows:

Lα(X,Y) = F (X) +
1

α

〈
Y,

√
I −W

2
X

〉
+

1

2α
∥X∥2(I−W)/2︸ ︷︷ ︸

Rα(X,Y)

.

We then apply the following variant of primal-dual gradient method, where we set η = α:

X(t+ 1/2) = X(t)− η∇F (X(t)),

X(t+ 1) = X(t+ 1/2)− η∇XRη(X(t+ 1/2),Y(t)),

Y(t+ 1) = Y(t) + η∇Lη(X(t+ 1),Y(t)).

97

We obtain

X(t+ 1) =
I +W

2
(X(t)− η∇F (X(t)))−

√
I −W

2
Y(t),

Y(t+ 1) = Y(t) +

√
I −W

2
X(t+ 1).

Similarly, we can eliminate the variable Y(t) and get

X(t+ 2) =
I +W

2
(2X(t+ 1)− X(t)− η(∇F (X(t+ 1))−∇F (X(t)))),

which is just the exact diffusion/NIDS algorithm.

We can see that, the primal-dual perspective reveals certain underlying connections between

gradient-tracking-type algorithms. This allows us to develop unified frameworks for analyzing

the convergence of gradient-tracking-type algorithms. For example, the paper [Xu et al., 2021]

proposes the following general algorithm:

X(t+ 1) = AX(t)− ηB∇F (X(t))− Y(t),

Y(t) = Y(t) + CX(t+ 1),

which include gradient tracking (with symmetric weight matrices), EXTRA and exact diffu-

sion/NIDS as its special cases. The paper then proves convergence results for the above general

algorithm using operator splitting techniques, which includes the following result as a special

case:

Theorem 4.4. Suppose the weight matrix W is real symmetric, positive definite and satisfies

W1 = 1 and σ =
∥∥W − 1

N 11T
∥∥
2
< 1. Suppose each fi is µ-strongly convex and L-smooth.

Then with a properly chosen step size, the number of iterations needed for the gradient tracking

algorithm (4.1) to achieve ∥x̄(t)− x∗∥2 ≤ ϵ can be upper bounded by

O

(
max

{
1

κλmin(W 2)
,

1

(1− σ)2

}
ln

1

ϵ

)
,

where κ = µ/L.

We can see that, if we choose the weight matrix W to be W = (I + W)/2 with W being

the lazy Metropolis weight matrix, then λmin(W
2) ≥ 1/4, and the above complexity bound will

be (asymptotically) better than the one O
(

1
κ2(1−σ)2

)
implied by Theorem 4.1. On the other

hand, we point out that the conditions imposed in Theorem 4.4 is stronger than the conditions

in Theorem 4.1.

Notes on References

Our materials on the gradient tracking algorithm (4.1) were based on [Qu and Li, 2018]

and [Nedić et al., 2017]; [Nedić et al., 2017] named the algorithm (4.1) DIGing (a distributed

98

inexact gradient method and a gradient tracking technique). The paper [Qu and Li, 2018]

analyzed (4.1) for both convex and strongly convex cases but assumed fixed undirected commu-

nication graphs, while [Nedić et al., 2017] only analyzed the strongly convex case but considered

time-varying communication graphs. The analysis of (4.1) for convex and smooth functions also

employs techniques from [Tang et al., 2021].

We note that the distributed tracking technique employed by (4.1) appeared in the earlier

work [Zhu and Mart́ınez, 2010]. Diffusion variants of (4.1) appeared in [Xu et al., 2015] and

[Di Lorenzo and Scutari, 2016]; the former paper also considered uncoordinated step sizes, while

the latter one mainly focused on nonconvex problems.

EXTRA was proposed by [Shi et al., 2015a] and, as we have mentioned, is perhaps the first

work on distributed optimization algorithms that successfully bridge the gap in the convergence

rate compared to the centralized counterparts. EXTRA was generalized to PG-EXTRA for

distributed composite optimization in [Shi et al., 2015b]. Exact diffusion was proposed and

studied in [Yuan et al., 2019a,Yuan et al., 2019b], which also considered locally balanced weight

matrices. NIDS was proposed in [Li et al., 2019], which studied the more general composite

optimization setting. The paper [Xu et al., 2021] proposed a unified framework for gradient-

tracking-type algorithms and provide convergence analysis leveraging the theory of operator

splitting. For more details on the theory of operator splitting and its relation with distributed

optimization, we refer to the book [Ryu and Yin, 2022].

We mention that the gradient-tracking-type algorithms presented in this chapter also have

close relationship with the following continuous-time distributed algorithm [Wang and Elia, 2010,

Gharesifard and Cortés, 2014]

:
Ẋ(t) = − LX(t)− LY(t)−∇F (X(t)),

Ẏ(t) = LX(t),
(4.10)

where L ∈ RN×N is the Laplacian matrix of the communication graph. (4.10) can be viewed as

the primal-dual gradient flow of the augmented Lagrangian

L (X,Y) = F (X) + ⟨Y, LX⟩+ 1

2
∥X∥2L.

On the other hand, (4.10) can also be regarded as incorporating the PI control strategy to the

gradient flow Ẋ(t) = −∇F (X(t)), where LX(t) is the proportional term and LY(t) is the integral

term, so that X(t) will be driven to consensus.

Bibliography

[Di Lorenzo and Scutari, 2016] Di Lorenzo, P. and Scutari, G. (2016). Next: In-network noncon-

vex optimization. IEEE Transactions on Signal and Information Processing over Networks,

2(2):120–136.

[Gharesifard and Cortés, 2014] Gharesifard, B. and Cortés, J. (2014). Distributed continuous-

time convex optimization on weight-balanced digraphs. IEEE Transactions on Automatic

Control, 59(3):781–786.

99

[Horn and Johnson, 2013] Horn, R. A. and Johnson, C. R. (2013). Matrix Analysis. Cambridge

University Press, 2nd edition.

[Li et al., 2019] Li, Z., Shi, W., and Yan, M. (2019). A decentralized proximal-gradient method

with network independent step-sizes and separated convergence rates. IEEE Transactions on

Signal Processing, 67(17):4494–4506.

[Nedić et al., 2017] Nedić, A., Olshevsky, A., and Shi, W. (2017). Achieving geometric conver-

gence for distributed optimization over time-varying graphs. SIAM Journal on Optimization,

27(4):2597–2633.

[Qu and Li, 2018] Qu, G. and Li, N. (2018). Harnessing smoothness to accelerate distributed

optimization. IEEE Transactions on Control of Network Systems, 5(3):1245–1260.

[Ryu and Yin, 2022] Ryu, E. K. and Yin, W. (2022). Large-Scale Convex Optimization: Algo-

rithms & Analyses via Monotone Operators. Cambridge University Press, Cambridge, UK.

[Shi et al., 2015a] Shi, W., Ling, Q., Wu, G., and Yin, W. (2015a). EXTRA: An exact first-

order algorithm for decentralized consensus optimization. SIAM Journal on Optimization,

25(2):944–966.

[Shi et al., 2015b] Shi, W., Ling, Q., Wu, G., and Yin, W. (2015b). A proximal gradient al-

gorithm for decentralized composite optimization. IEEE Transactions on Signal Processing,

63(22):6013–6023.

[Tang et al., 2021] Tang, Y., Zhang, J., and Li, N. (2021). Distributed zero-order algorithms

for nonconvex multiagent optimization. IEEE Transactions on Control of Network Systems,

8(1):269–281.

[Wang and Elia, 2010] Wang, J. and Elia, N. (2010). Control approach to distributed optimiza-

tion. In Proceedings of the 48th Annual Allerton Conference on Communication, Control, and

Computing (Allerton), pages 557–561.

[Xu et al., 2021] Xu, J., Tian, Y., Sun, Y., and Scutari, G. (2021). Distributed algorithms for

composite optimization: Unified framework and convergence analysis. IEEE Transactions on

Signal Processing, 69:3555–3570.

[Xu et al., 2015] Xu, J., Zhu, S., Soh, Y. C., and Xie, L. (2015). Augmented distributed gradient

methods for multi-agent optimization under uncoordinated constant stepsizes. In Proceedings

of the 54th IEEE Conference on Decision and Control (CDC), pages 2055–2060.

[Yuan et al., 2019a] Yuan, K., Ying, B., Zhao, X., and Sayed, A. H. (2019a). Exact diffusion for

distributed optimization and learning — Part I: Algorithm development. IEEE Transactions

on Signal Processing, 67(3):708–723.

[Yuan et al., 2019b] Yuan, K., Ying, B., Zhao, X., and Sayed, A. H. (2019b). Exact diffusion for

distributed optimization and learning — Part II: Convergence analysis. IEEE Transactions

on Signal Processing, 67(3):724–739.

100

[Zhu and Mart́ınez, 2010] Zhu, M. and Mart́ınez, S. (2010). Discrete-time dynamic average con-

sensus. Automatica, 46(2):322–329.

101

Chapter 5

Alternating Direction Method of

Multipliers

5.1 Introduction to ADMM

The alternating direction method of multipliers (ADMM) is a popular device that can be em-

ployed for designing algorithms for large-scale or distributed convex optimization problems. In

this section, we provide an introduction to ADMM with some simple examples.

We start with a relatively simple problem setup. Consider the following convex optimization

problem:

min
x1∈Rd1 ,x2∈Rd2

f1(x1) + f2(x2)

s.t. A1x1 +A2x2 = b,
(5.1)

where fi : Rdi → R ∪ {+∞}, i = 1, 2 are convex functions, A1 and A2 are real matrices of

appropriate dimensions, and b is a real vector. We define the augmented Lagrangian of this

optimization problem by

Lρ(x1, x2, y) = f1(x1) + f2(x2) + ⟨y,A1x1 +A2x2 − b⟩+ ρ

2
∥A1x1 +A2x2 − b∥2.

We can see that, compared with the ordinary Lagrangian function, we add a penalty term
ρ
2∥A1x1 + A2x2 − b∥2 in the augmented Lagrangian, where ρ > 0 is a positive parameter. The

iterations of ADMM are given by

x1(t+ 1) ∈ argmin
x1

Lρ(x1, x2(t), y(t)),

x2(t+ 1) ∈ argmin
x2

Lρ(x1(t+ 1), x2, y(t)),

y(t+ 1) = y(t) + η(A1x1 +A2x2 − b),

102

or, equivalently,

x1(t+ 1) ∈ argmin
x1

(
f1(x1) + ⟨AT

1 y(t), x1⟩+
ρ

2
∥A1x1 +A2x2(t)− b∥2

)
x2(t+ 1) ∈ argmin

x2

(
f2(x2) + ⟨AT

2 y(t), x2⟩+
ρ

2
∥A1x1(t+ 1) +A2x2 − b∥2

)
y(t+ 1) = y(t) + η (A1x1(t+ 1) +A2x2(t+ 1)− b) .

ADMM is closely related to the dual ascent method and the method of multipliers.

Dual Ascent, Method of Multipliers, and ADMM

Consider the equality-constrained convex optimization problem

min
x∈Rd

f(x)

s.t. Ax = b,
(5.2)

where f : Rd → R ∪ {+∞} is a convex function, A ∈ Rp×d and b ∈ Rp. We always assume that

the epigraph of f is nonempty and closed. The dual problem for (5.2) is given by

max
y∈Rp

g(y), g(y) = inf
x∈Rd

(f(x) + ⟨y,Ax− b⟩) .

It’s not hard to show that g is a concave function. We also introduce the notion of convex

conjugate of the convex function f , defined by

f∗(z) := sup
x∈Rd

(⟨z, x⟩ − f(x)) .

It’s not hard to see that f∗ is a convex function that can take values in R∪{+∞}, and the dual

objective function g can be written as

g(y) = −f∗(−ATy)− ⟨b, y⟩.

The dual ascent method is based on the following observation, which can be derived as a corollary

of [Rockafellar, 1970, Theorems 23.5 and 23.9]:

Lemma 5.1. Let g denote the objective function of the dual problem. Then

−(Ax∗ − b) ∈ ∂(−g)(y)

if f(x∗) + ⟨y,Ax∗ − b⟩ = g(y), i.e., if x∗ minimizes f(x) + ⟨y,Ax− b⟩ over x ∈ Rd.

Lemma 5.1 indicates that, given y ∈ Rp, if we can find a minimizer x∗ of the Lagrangian

f(x)+ ⟨y,Ax− b⟩, then a subgradient of −g at y is given by Ax∗− b. As a result, we may regard

the following iterations

x(t+ 1) ∈ argmin
x∈Rd

f(x) + ⟨y(t), Ax− b⟩

y(t+ 1) = y(k) + ηt(Ax(t+ 1)− b)
(5.3)

103

as performing the subgradient descent method on the function (−g). Then, if strong duality

holds for the convex optimization problem (5.2), as long as f(x)+ ⟨y(t), Ax− b⟩ has a minimizer

over x ∈ Rd for all t and y(t) converges to an optimal dual variable, f(x(t)) will converge to the

optimal value of (5.2). The algorithm (5.3) is called the dual ascent method.

It can be shown that, if f is µ-strongly convex, then a minimizer of f(x) + ⟨y,Ax− b⟩ over
x ∈ Rd always exists, and −g in this case is in fact ∥A∥22/µ-smooth; if f is further L-smooth,

then −g will be ∥A∥22/L-strongly convex.1 However, it seems tricky to find weaker conditions

than strong convexity that guarantee the existence of a minimizer of f(x) + ⟨y(t), Ax− b⟩ for all
t, and there are many scenarios where even those weaker conditions do not hold. Also, when f is

not strongly convex, the dual objective function g may not be smooth, and we may need to use

a diminishing sequence of step sizes ηt to guarantee the convergence of dual ascent as t → ∞,

which may slow down convergence. To overcome these shortcomings, the method of multipliers

has been proposed:

x(t+ 1) ∈ argmin
x∈Rd

Lρ(x, y(t)),

y(t+ 1) = y(t) + η(Ax(t+ 1)− b),

with the augmented Lagrangian defined as

Lρ(x, y) = f(x) + ⟨y,Ax− b⟩+ ρ

2
∥Ax− b∥2.

The following lemma shows that, under relatively mild conditions, we can guarantee that Lρ(x, y)

has a minimizer over x ∈ Rd for every y.

Lemma 5.2. Let f : Rd → R ∪ {+∞} be a convex function with a nonempty and closed

epigraph, and let A ∈ Rp×d and b ∈ Rp. Suppose the relative interior of the set{
z ∈ Rd : f∗(z) < +∞

}
is nonempty and intersects with range(AT), where f∗ denotes the convex conjugate of f . Then

for any y ∈ Rd and ρ > 0, the set

argmin
x∈Rd

(
f(x) + ⟨y,Ax− b⟩+ ρ

2
∥Ax− b∥2

)
is nonempty.

Proof. Since the epigraph of f is closed, it is known from convex analysis that the convex

conjugate of f∗ is f [Rockafellar, 1970, Theorem 12.2]. Now consider the optimization problem

min
µ∈Rp,ν∈Rn

f∗(ρν) + ⟨µ, y − ρb⟩+ ρ

2
∥µ∥2

s.t. ρATµ = ρν.
(5.4)

1This conclusion is a consequence of the fact that i) when a convex function f has a nonempty and closed

epigraph, for any (x, z), we have z ∈ ∂f(x) if and only if x ∈ ∂f∗(z); and that ii) ∂(−g)(y) = A∂f∗(−ATy) when

f∗(z) < +∞ for all z. See [Rockafellar, 1970, Theorems 23.5 and 23.9].

104

Since the relative interior of dom(f∗) = {z : f∗(z) < +∞} is nonempty and intersects with

range(AT), we can see that the above optimization problem satisfies Slater’s condition. The

objective function of the dual problem of (5.4) is given by

inf
µ,ν

(
f∗(ρν) + ⟨µ, y − ρb⟩+ ρ

2
∥µ∥2 + ρ⟨x,ATµ− ν⟩

)
= inf

ν
(f∗(ρν)− ⟨x, ρν⟩)− ρ

2
∥Ax− b+ y/ρ∥2

= − f(x)− ρ

2
∥Ax− b+ y/ρ∥2

= −
(
f(x) + ⟨y,Ax− b⟩+ ρ

2
∥Ax− b∥2

)
− ∥y∥

2

2ρ
.

Therefore the dual problem has a maximizer if and only if f(x) + ⟨y,Ax − b⟩ + ρ
2∥Ax − b∥2

has a minimizer. Finally, note that the optimization problem (5.4) can be reformulated as

minµ f
∗(ATµ)+ ⟨µ, y− ρb⟩+ ρ∥µ∥2/2, whose objective function is ρ-strongly convex. Thus (5.4)

has a finite optimal value, and by Slater’s condition, we see that an optimal dual variable exists,

implying that f(x) + ⟨y,Ax− b⟩+ ρ
2∥Ax− b∥2 has a minimizer.

The following theorem shows that, the method of multipliers converges with a properly chosen

constant step size:

Theorem 5.1. Suppose the conditions in Lemma 5.2 holds, and further suppose the prob-

lem (5.2) has a saddle point (x∗, y∗). Then, by setting η = ρ, the iterates generated by the

method of multipliers satisfy

lim
t→∞

f(x(t)) = f(x∗) and lim
t→∞

Ax(t)− b = 0.

Note that in Theorem 5.1 we choose the step size to be η = ρ. One nice property of this

choice is that, since x(t+ 1) minimizes Lρ(x, y(t)), we get

0 ∈ ∂xLρ(x(t+ 1), y(t))

= ∂f(x(t+ 1)) +AT(y(t) + ρ(Ax(t+ 1)− b))

= ∂f(x(t+ 1)) +ATy(t+ 1)

= ∂xL (x(t+ 1), y(t+ 1)),

where L is the ordinary Lagrangian. This indicates that the primal-dual pair (x(t+1), y(t+1))

will always be dual feasible. On the other hand, we mention that the method of multipliers will

still converge when η ∈ (0, 2ρ); see [Ryu and Yin, 2022, Chapter 8] for more details.

Now let’s consider the optimization problem (5.1). Applying the method of multipliers

to (5.1) gives

(x1(t+ 1), x2(t+ 1)) = argmin
x1,x2

(
f1(x1) + f2(x2) + ⟨y,A1x1 +A2x2 − b⟩

+
ρ

2
∥A1x1 +A2x2 − b∥2

)
,

y(t+ 1) = y(t) + η(A1x1(t+ 1) +A2x2(t+ 1)− b).

105

By comparing it with ADMM, we can see that in the method of multipliers, the optimization

over x1 and x2 is carried out jointly, while in ADMM, the optimization over x1 and x2 is carried

out sequentially, and in the optimization of x2 we plug in the updated value of x1. This difference

accounts for the term alternating direction in the name of ADMM.

Convergence of ADMM

The following theorem establishes the convergence of ADMM under relatively mild conditions:

Theorem 5.2. Suppose the problem (5.1) has a saddle point (x∗
1, x

∗
2, y

∗). Furthermore, suppose

for each i = 1, 2, the relative interior of the set{
z ∈ Rdi : f∗

i (z) < +∞
}

is nonempty and intersects with range(AT
i), where f∗

i denotes the convex conjugate of fi. Then,

the subproblems of ADMM for updating x1(t) and x2(t) always have solutions. Moreover, by

choosing η = ρ, we have

lim
t→∞

(f1(x1(t)) + f2(x2(t))) = f1(x
∗
1) + f2(x

∗
2), and lim

t→∞
(A1x1(t) +A2x2(t)− b) = 0.

The conclusion in Theorem 5.2 that the subproblems for updating x1(t) and x2(t) always

have solutions can be justified by Lemma 5.2, and we postpone the proof of convergence to

Appendix 5.A. The convergence proof employs the following Lyapunov function

V (t) =
ρ

2
∥A2(x2(t)− x∗

2)∥2 +
1

2ρ
∥y(t)− y∗∥2,

from which we can intuitively interpret the parameter ρ as controlling the balance between primal

and dual convergence: Large ρ facilitates convergence of the primal error ∥A2(x2(t)−x∗
2)∥, while

small ρ promotes convergence of the dual error ∥y(t)− y∗∥.
Note that in Theorem 5.2 we let η = ρ, but it can be shown that we can relax this condition

to be η ∈
(
0,

√
5+1
2 ρ

)
and ADMM will still converge; see [Ryu and Yin, 2022, Chapter 8] for

details. Also note that Theorem 5.1 can be viewed as a special case of Theorem 5.2.

Some Simple Examples

The main reason we employ sequential optimization instead of joint optimization in ADMM is

that, in many scenarios, optimizing over x1 and x2 separately is usually easier than optimizing

over (x1, x2) jointly, especially when the objective function is decomposed appropriately.

Example 5.1. Let X1 and X2 be two closed convex sets in Rd and suppose X1 ∩ X2 ̸= ∅.

Consider the problem of finding PX1∩X2
[z] for any z ∈ Rd\(X1 ∩ X2), given that the projections

PX1
and PX2

can be computed efficiently. This problem can be reformulated as an optimization

106

problem:

min
x1,x2∈Rd

1

2
∥z − x1∥2 + δX1(x1) + δX2(x2)

s.t. x1 − x2 = 0,

where δX denotes the indicator function of the convex set X defined by

δX (x) =

{
0, x ∈ X ,
+∞, x /∈ X .

The augmented Lagrangian is

Lρ(x1, x2, y) =
1

2
∥z − x1∥2 + δX1(x1) + δX2(x2) + ⟨y, x1 − x2⟩+

ρ

2
∥x1 − x2∥2.

Optimizing Lρ(x1, x2, y) over (x1, x2) jointly seems not easy to handle. On the other hand, by

applying ADMM, we get the following iterations

x1(t+ 1) = argmin
x1

Lρ(x1, x2(t), y(t))

= argmin
x1

(
1 + ρ

2

∥∥∥∥x1 −
z + ρx2(t)− y(t)

1 + ρ

∥∥∥∥2 + δX1(x1)

)

= PX1

[
z + ρx2(t)− y(t)

1 + ρ

]
,

x2(t+ 1) = argmin
x2

Lρ(x1(t+ 1), x2, y(t))

= argmin
x2

(
ρ

2

∥∥∥∥x2 −
y(t) + ρx1(t+ 1)

ρ

∥∥∥∥2 + δX2(x2)

)

= PX2

[
x1(t+ 1) +

y(t)

ρ

]
,

y(t+ 1) = y(t) + ρ(x1(t+ 1)− x2(t+ 1)).

Theorem 5.2 together with the result in Exercise 5.1 guarantees that x1(t) and x2(t) generated

by the above iterations converge to PX1∩X2 [z].

Exercise 5.1. Let X1,X2 ⊆ Rd be two closed and convex sets with a nonempty inter-

section. Let z ∈ Rd\(X1 ∩ X2) be arbitrary, and suppose (un)n∈N and (vn)n∈N are two

sequences satisfying

1. un ∈ X1 and vn ∈ X2 for all n ∈ N;

2. ∥un − vn∥ → 0 as n→∞;

3. ∥un − z∥ → ∥PX1∩X2 [z]− z∥ as n→∞.

Show that un → PX1∩X2
[z] as n→∞.

107

Example 5.2. Consider the LASSO problem formulated as

min
x

1

2
∥Ax− b∥2 + λ∥x∥1,

where λ > 0 is a regularization parameter. We reformulate this problem as

min
x1,x2

1

2
∥Ax1 − b∥2 + λ∥x2∥1

s.t. x1 = x2.

The corresponding augmented Lagrangian is then

Lρ(x1, x2, y) =
1

2
∥Ax1 − b∥2 + λ∥x2∥1 + ⟨y, x1 − x2⟩+

ρ

2
∥x1 − x2∥2.

The ADMM iterations are given by

x1(t+ 1) = argmin
x1

Lρ(x1, x2(t), y(t))

= argmin
x1

(
1

2
xT
1 (A

TA+ ρI)x1 + ⟨y(t)−ATb− ρx2(t), x1⟩
)

=
(
ATA+ ρI

)−1 (
ATb+ ρx2(t)− y(t)

)
x2(t+ 1) = argmin

x2

Lρ(x1(t+ 1), x2, y(t))

= argmin
x2

∑
i

(
λ|x2,i|+

ρ

2

∣∣∣∣x2,i −
yi + ρx1,i(t+ 1)

ρ

∣∣∣∣2
)

= Sλ/ρ

[
x1(t+ 1) +

y(t)

ρ

]
,

y(t+ 1) = y(t) + ρ(x1(t+ 1)− x2(t+ 1)),

where the soft thresholding operator Sκ is defined by

(Sκ[v])i := argmin
xi

(
κ|xi|+

1

2
|xi − vi|2

)
=

vi − κ, vi > κ,

0, vi ∈ [−κ, κ],
vi + κ, vi < −κ.

Note that the update of x1 is essentially a ridge regression step, which is usually the main

contributor to the total complexity of the algorithm, while the update of x2 is a simple soft

thresholding step, whose computation complexity is in general negligible compared to the update

of x1.

5.2 Decentralized ADMM for Consensus Optimization

In this section, we show how to design a distributed optimization algorithm for consensus opti-

mization based on ADMM.

108

Consider a group of N agents connected by a communication network. Recall that the

consensus optimization problem is formulated as

min
x∈Rd

1

N

N∑
i=1

fi(x),

where each fi : Rd → R is a local cost function associated with agent i. We assume that each fi
is a convex function, and also assume that the topology of the communication network can be

described by an undirected connected graph G = ({1, . . . , N}, E).
It’s not hard to see that, since the graph G is connected, the consensus optimization problem

can be reformulated as

min
x1,...,xN∈Rd,

ze∈Rd:e∈E

N∑
i=1

fi(xi)

s.t. xi = ze, xj = ze, ∀e = {i, j} ∈ E .

By setting x = (x1, . . . , xN), z = (ze : e ∈ E), f(x) =
∑N

i=1 fi(xi), g(z) = 0, we can see that the

above formulation can be written abstractly as

min
x,z

f(x) + g(z)

s.t. Ax+Bz = 0

for some matrices A and B, showing that the formulation fits the problem setup of ADMM. The

corresponding augmented Lagrangian is given by

Lρ(x, z, y) =

N∑
i=1

fi(xi) +
∑

e={i,j}∈E

(⟨ye,i, xi − ze⟩+ ⟨ye,j , xj − ze⟩)

+
ρ

2

∑
e={i,j}∈E

(
∥xi − ze∥2 + ∥xj − ze∥2

)
,

where y = ((ye,i, ye,j) : e = {i, j} ∈ E). The x-update of ADMM is given by

x(t+ 1) = argmin
x

{
N∑
i=1

fi(xi)

+
∑

e={i,j}

[
⟨ye,i(t)− ρze(t), xi⟩+ ⟨ye,j(t)− ρze(t), xj⟩+

ρ

2
(∥xi∥2 + ∥xj∥2)

]}

= argmin
x

N∑
i=1

(
fi(xi) +

∑
e∈E:e∋i

⟨ye,i(t)− ρze(t), xi⟩+
ρ deg(i)

2
∥xi∥2

)
.

It’s not hard to see that the objective function on right-hand side above is separable. Therefore

the x-update can be written as

xi(t+ 1) = argmin
xi∈Rd

(
fi(xi) +

∑
e∈E:e∋i

⟨ye,i(t)− ρze(t), xi⟩+
ρdeg(i)

2
∥xi∥2

)
.

109

The z-update of ADMM is given by

z(t+ 1) = argmin
z

∑
e={i,j}

[
− ⟨ye,i(t) + ye,j(t) + ρxi(t+1) + ρxj(t+1), ze⟩+

ρ

2

(
∥ze∥2 + ∥ze∥2

)]
.

The right-hand side can be solve explicitly, which leads to

ze(t+ 1) =
ρ−1(ye,i(t) + ye,j(t)) + xi(t+ 1) + ρxj(t+ 1)

2
, e = {i, j}.

Finally, the y-update of ADMM is given by

ye,i(t+ 1) = ye,i(t) + ρ(xi(t+ 1)− ze(t+ 1)).

We summarize the ADMM iterations as follows:

xi(t+ 1) = argmin
xi∈Rd

(
fi(xi) +

∑
e∈E:e∋i

⟨ye,i(t)− ρze(t), xi⟩+
ρ deg(i)

2
∥xi∥2

)
,

ze(t+ 1) =
ρ−1(ye,i(t) + ye,j(t)) + xi(t+ 1) + xj(t+ 1)

2
,

ye,i(t+ 1) = ye,i(t) + ρ(xi(t+ 1)− ze(t+ 1)), e = {i, j}.

We then try to simplify the above iterations by eliminating some variables. First, note that by

plugging the z-update rule into the y-update rule, we get

ye,i(t+ 1) = ye,i(t) + ρxi(t+ 1)− 1

2
(ye,i(t) + ye,j(t) + ρxi(t+ 1) + ρxj(t+ 1))

=
1

2
(ye,i(t)− ye,j(t) + ρ(xi(t+ 1)− xj(t+ 1))) , e = {i, j}.

By exchanging i and j and taking the summation, we get ye,i(t+1)+ye,j(t+1) = 0 for all t ≥ 0.

Without loss of generality we may adopt the initialization ye,i(0) = ye,j = 0 for all e = {i, j} ∈ E ,
and then we get

ze(t+ 1) =
1

2
(xi(t+ 1) + xj(t+ 1)).

We then elimiate ze in the x-update rule and obtain

xi(t+ 1) = argmin
xi∈Rd

(
fi(xi) +

∑
e∈E:e={i,j}

〈
ye,i(t)−

ρ

2
(xi(t) + xj(t)) , xi

〉
+

ρdeg(i)

2
∥xi∥2

)
.

To further simplify the iterations, we introduce the variable

vi(t) =
1

deg(i)

∑
e∈E:e={i,j}

[
−ρ−1ye,i(t) +

1

2
(xi(t) + xj(t))

]
.

Then the x-update can be written as

xi(t+ 1) = argmin
xi∈Rd

(
fi(xi)− ρdeg(i)⟨vi(t), xi⟩+

ρdeg(i)

2
∥xi∥2

)
= argmin

xi∈Rd

(
fi(xi) +

ρdeg(i)

2
∥xi − vi(t)∥2

)
.

110

Moreover,

vi(t+ 1)− vi(t)

=
1

deg(i)

∑
e∈E:e={i,j}

[
−ρ−1(ye,i(t+ 1)− ye,i(t)) +

1

2
(xi(t+ 1) + xj(t+ 1)− xi(t)− xj(t))

]

=
1

deg(i)

∑
e∈E:e={i,j}

[
−1

2
(ye,i(t) + ye,j(t)) + xj(t+ 1)− 1

2
(xi(t) + xj(t))

]

=
1

deg(i)

∑
j∈Ni

(
xj(t+ 1)− 1

2
xj(t)

)
− 1

2
xi(t),

where in the second step we plugged in the y-update rule, and in the third step we used ye,i(t)+

ye,j(t) = 0. Summarizing the previous derivations, we get

xi(t+ 1) = argmin
xi∈Rd

(
fi(xi) +

ρ deg(i)

2
∥xi − vi(t)∥2

)
,

vi(t+ 1) = vi(t) +
1

deg(i)

∑
j∈Ni

xj(t+ 1)− 1

2

∑
j∈Ni

xj(t)−
1

2
xi(t).

It’s not hard to see that the above iterations can be implemented in a decentralized fashion by

the group of agents via the communication network.

Notes on References

One of the standard references on ADMM is the review paper [Boyd et al., 2011], and we highly

recommend interested readers to go through the various examples and applications of ADMM

presented in this paper. However, it should be noted that the paper mistakenly claimed that

the subproblems for finding x1(t + 1) and x2(t + 1) have solutions as long as f1 and f2 have

nonempty closed epigraphs; see also [Chen et al., 2017].

Many technical materials in this chapter are adapted from [Ryu and Yin, 2022], including

Lemma 5.2, Theorem 5.1, Theorem 5.2, and the decentralized ADMM algorithm. The book [Ryu

and Yin, 2022] also presents some variations and extensions of ADMM.

The analysis in this chapter only establishes the convergence of ADMM but without bounding

the convergence rate. Some existing works that analyze the convergence rate of ADMM include

[He and Yuan, 2012], [Shi et al., 2014], [Deng and Yin, 2016], [Davis and Yin, 2017], etc. We also

refer to the Bibliographical Notes of [Ryu and Yin, 2022, Chapter 8], which provides an excellent

survey of the history and relevant works of ADMM.

111

5.A Proof of Convergence of ADMM

First of all, note that

L (x1(t+ 1), x2(t+ 1), y∗)−L (x∗
1, x

∗
2, y

∗)

= f1(x1(t+ 1))− f1(x
∗
1) + f2(x2(t+ 1))− f2(x

∗
2) + ⟨y∗, A1x1(t+ 1) +A2(x2(t+ 1)− b)⟩,

(5.5)

where we employ the equality A1x
∗
1 +A2x

∗
2 = b. To bound the differences f1(x1(t+1))− f1(x

∗
1)

and f2(x2(t+1))−f2(x
∗
2), we utilize the update rules of x1(t) and x2(t). Specifically, x1(t+1) ∈

argminx1
Lρ(x1, x2(t), y(t)) implies

0 ∈ ∂x1Lρ(x1(t+ 1), x2(t), y(t))

= ∂f1(x1(t+ 1)) +AT
1 y(t) + ρAT

1 (A1x1(t+ 1) +A2x2(t)− b),

i.e., −AT
1 (y(t)+ρ(A1x1(t+1)+A2x2(t)− b)) ∈ ∂f1(x1(t)). Therefore, for an arbitrary x1 ∈ Rd1 ,

we have

f1(x1) ≥ f1(x1(t+ 1))− ⟨AT
1 (y(t) + ρ(A1x1(t+ 1) +A2x2(t)− b)), x1 − x1(t+ 1)⟩

= f1(x1(t+ 1)) + ⟨y(t+ 1)− ρA2(x2(t+ 1)− x2(t)), A1(x1(t+ 1)− x1)⟩
(5.6)

Similarly, from the update rule of x2(t), we get

f2(x2) ≥ f2(x2(t+ 1))− ⟨AT
2 (y(t) + ρ(A1x1(t+ 1) +A2x2(t+ 1)− b)), x2 − x2(t+ 1)⟩

= f2(x2(t+ 1)) + ⟨y(t+ 1), A2(x2(t+ 1)− x2)⟩.
(5.7)

By setting x1 = x∗
1 in (5.6) and x2 = x∗

2 in (5.7) and plugging the two inequalities into (5.5), we

get

L (x1(t+ 1), x2(t+ 1), y∗)−L (x∗
1, x

∗
2, y

∗)

≤ ⟨y∗ − y(t+ 1), A1x1(t+ 1) +A2x2(t+ 1)− b)⟩
+ ρ⟨A2(x2(t+ 1)− x2(t)), A1(x1(t+ 1)− x∗

1)⟩.
We then plug in

A1(x1(t+ 1)− x∗
1) = −A2(x2(t+ 1)− x∗

2) + ρ−1(y(t+ 1)− y(t))

and

⟨y∗ − y(t+ 1), A1x1(t+ 1) +A2x2(t+ 1)− b⟩ = ρ−1⟨y∗ − y(t+ 1), y(t+ 1)− y(t)⟩

to get

L (x1(t+ 1), x2(t+ 1), y∗)−L (x∗
1, x

∗
2, y

∗)

≤ − 1

ρ
⟨y(t+ 1)− y∗, y(t+ 1)− y(t)⟩ − ρ⟨A2(x2(t+ 1)− x2(t)), A2(x2(t+ 1)− x∗

2)⟩

+ ⟨A2(x2(t+ 1)− x2(t)), y(t+ 1)− y(t)⟩

(5.8)

To further bound the inner product ⟨A2(x2(t+1)− x2(t)), y(t+1)− y(t)⟩, we set x2 = x2(t)

in (5.7) and get

f2(x2(t)) ≥ f2(x2(t+ 1)) + ⟨y(t+ 1), A2(x2(t+ 1)− x2(t))⟩.

112

Then, we decrement the index t+ 1 to t in (5.7) and set x2 = x2(t+ 1) to get

f2(x2(t+ 1)) ≥ f2(x2(t)) + ⟨y(t), A2(x2(t)− x2(t+ 1))⟩.

Summing the above two inequalities leads to

0 ≥ ⟨y(t+ 1)− y(t), A2(x2(t+ 1)− x2(t))⟩,

and together with (5.8) we get

L (x1(t+ 1), x2(t+ 1), y∗)−L (x∗
1, x

∗
2, y

∗)

≤ − 1

ρ
⟨y(t+ 1)− y∗, y(t+ 1)− y(t)⟩ − ρ⟨A2(x2(t+ 1)− x2(t)), A2(x2(t+ 1))− x∗

2⟩.

We now introduce the Lyapunov function

V (t) =
ρ

2
∥A2(x2(t)− x∗

2)∥2 +
1

2ρ
∥y(t)− y∗∥2.

Then it can be seen that

V (t) =
ρ

2
∥A2(x2(t)− x2(t+ 1) + x2(t+ 1)− x∗

2)∥2 +
1

2ρ
∥y(t)− y(t+ 1) + y(t+ 1)− y∗∥2

= V (t+ 1)− ρ⟨A2(x2(t+ 1)− x2(t)), A2(x2(t+ 1)− x∗
2)⟩+

ρ

2
∥A2(x2(t+ 1)− x2(t))∥2

− 1

ρ
⟨y(t+ 1)− y(t), y(t+ 1)− y∗⟩+ 1

2ρ
∥y(t+ 1)− y(t)∥2

≥ V (t+ 1) +
ρ

2
∥A2(x2(t+ 1)− x2(t))∥2 +

1

2ρ
∥y(t+ 1)− y(t)∥2

+ L (x1(t+ 1), x2(t+ 1), y∗)−L (x∗
1, x

∗
2, y

∗),

or

V (t+ 1) ≤ V (t)−
(
ρ

2
∥A2(x2(t+ 1)− x2(t))∥2 +

1

2ρ
∥y(t+ 1)− y(t)∥2

)
− (L (x1(t+ 1), x2(t+ 1), y∗)−L (x∗

1, x
∗
2, y

∗)).

Note that L (x1(t+ 1), x2(t+ 1), y∗)−L (x∗
1, x

∗
2, y

∗) ≥ 0 since (x∗
1, x

∗
2) minimizes L (x1, x2, y

∗).

By taking the telescoping sum and noting that V (t) ≥ 0 for all t, we get

V (0) ≥
∞∑
t=0

(
ρ

2
∥A2(x2(t+ 1)− x2(t))∥2 +

1

2ρ
∥y(t+ 1)− y(t)∥2

)

+
∞∑
t=1

(L (x1(t), x2(t), y
∗)−L (x∗

1, x
∗
2, y

∗)),

which implies that A1x1(t) +A2x2(t)− b = ρ−1(y(t)− y(t− 1))→ 0 and

f1(x1(t)) + f2(x2(t))− f1(x
∗
1)− f2(x

∗
2)

= L (x1(t), x2(t), y
∗)−L (x∗

1, x
∗
2, y

∗)− ⟨y∗, A1x1(t) +A2x2(t)− b⟩
→ 0

as t→∞.

113

Bibliography

[Boyd et al., 2011] Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Dis-

tributed optimization and statistical learning via the alternating direction method of multi-

pliers. Foundations and Trends® in Machine learning, 3(1):1–122.

[Chen et al., 2017] Chen, L., Sun, D., and Toh, K.-C. (2017). A note on the convergence of

ADMM for linearly constrained convex optimization problems. Computational Optimization

and Applications, 66:327–343.

[Davis and Yin, 2017] Davis, D. and Yin, W. (2017). Faster convergence rates of relaxed

Peaceman–Rachford and ADMM under regularity assumptions. Mathematics of Operations

Research, 42(3):783–805.

[Deng and Yin, 2016] Deng, W. and Yin, W. (2016). On the global and linear convergence of

the generalized alternating direction method of multipliers. Journal of Scientific Computing,

66:889–916.

[He and Yuan, 2012] He, B. and Yuan, X. (2012). On the O(1/n) convergence rate of the

Douglas–Rachford alternating direction method. SIAM Journal on Numerical Analysis,

50(2):700–709.

[Rockafellar, 1970] Rockafellar, R. T. (1970). Convex Analysis. Princeton University Press.

[Ryu and Yin, 2022] Ryu, E. K. and Yin, W. (2022). Large-Scale Convex Optimization: Algo-

rithms & Analyses via Monotone Operators. Cambridge University Press, Cambridge, UK.

[Shi et al., 2014] Shi, W., Ling, Q., Yuan, K., Wu, G., and Yin, W. (2014). On the linear

convergence of the ADMM in decentralized consensus optimization. IEEE Transactions on

Signal Processing, 62(7):1750–1761.

114

Chapter 6

Distributed Averaging and

Optimization over Time-Varying

Networks

6.1 Time-Varying Communication Networks

In many practical scenarios, the communication network connecting the group of agents is not

static and varies with time. For example, consider a group of N drones that are equipped

with wireless communication modules. Due to limited power supply, the wireless communication

module only allows the drone to communicate with other drones within a limited physical range.

Specifically, at time t, suppose the wireless signal sent by drone i can be received by drone j only

when ∥rj(t)− ri(t)∥ ≤ Ri, where ri denotes the position vector of drone i, and Ri > 0 represents

the radius of the range that the wireless signal sent by drone i can cover. Then the topology of

the wireless communication network at time t can be modeled by the directed graph G(t) defined
by

G(t) = {(1, . . . , N), E(t)},
(i, j) ∈ E(t) ⇐⇒ ∥rj(t)− ri(t)∥ ≤ Ri.

It can be seen that, as the positions of the drones change, the communication graph G(t) in

general will also change. Also, since each Ri can be different, the communication graph in

general will be directed.

The time-varying nature of the communication graph imposes further challenges on the design

and analysis of multi-agent distributed averaging and consensus optimization algorithms. From

the previous chapters, we can see that one of the core components of many consensus methods

is the weighted-sum iteration

xi(t+ 1) =

N∑
i=1

Wij(t)xj(t),

115

where the weights Wij(t) are compatible with the topology of the communication network. Note

that since the communication network is now time-varying, the weights will necessarily become

dependent on t. As usual, we let W (t) =∈ RN×N denote the weight matrix whose entries are

the weights Wij(t). We also denote

X(t) =

— x1(t)

T —
...

— xN (t)T —

 ∈ RN×d.

The weighted-sum iteration can then be equivalently written as

X(t+ 1) = W (t)X(t),

which leads to

X(t) = W (t− 1) · · ·W (s+ 1) ·W (s)X(s)

for any s, t ∈ N with s > t. Therefore, it can be expected that the core of our analysis should lie

in characterizing the behavior of the product

W [s, t) := W (t− 1) · · ·W (s+ 1) ·W (s),

especially when t− s is sufficiently large.

Before proceeding, we first list some useful notions and terminologies.

Definition 6.1. Let A ∈ RN×N be a real matrix.

1. A is said to be row-stochastic, if every entry of A is nonnegative, and A1 = 1.

A is said to be column-stochastic, if AT is row-stochastic.

A is said to be doubly stochastic, if it is both row-stochastic and column-stochastic.

2. We say that G = ({1, . . . , N}, E) is the associated directed graph of A, if for all i, j ∈
{1, . . . , N}, we have Aij ̸= 0 ⇐⇒ (j, i) ∈ E .

Exercise 6.1. Let A,A(1), . . . , A(N−1) be N×N real matrices with nonnegative entries,

and suppose their associated directed graphs are all strongly connected. Moreover, suppose

their diagonal elements are all positive.

1. Let u ∈ RN be an arbitrary vector with at least one zero entry. Show that the number

of nonzero entries of Au is strictly greater than the number of nonzero entries of u.

2. Show that all entries of A(1)A(2) · · ·A(N − 1) are positive.

3. Suppose there exists ϵ > 0 such that all positive entries of A(t) are lower bounded by

ϵ for any t = 1, . . . , N − 1. Show that any entry of A(1)A(2) · · ·A(N − 1) is greater

than or equal to ϵN−1.

We first consider the situation where the graph G(t) is strongly connected for all t. The

following theorem provides a fundamental tool for analyzing the convergence behavior of W [s, t).

116

Theorem 6.1. For each t ∈ N, let W (t) ∈ RN×N be a weight matrix with associated directed

graph G(t) = ({1, . . . , N}, E(t)). Suppose the following conditions are satisfied:

1. Each G(t) is strongly connected.

2. Each W (t) is row-stochastic.

3. Wii(t) > 0 for all i = 1, . . . , N and all t ∈ N.

4. There exists ϵ > 0 such that for any t ∈ N, Wij(t) ≥ ϵ whenever Wij(t) > 0.

Then there exist C > 0, σ ∈ (0, 1), η > 0 and a sequence of vectors

w(s) ∈
{
w ∈ RN : wi ≥ η, ∀i and 1Tw = 1

}
, s = 0, 1, 2, . . .

such that ∣∣∣(W [s, t)
)
ij
− wj(s)

∣∣∣ = ∣∣∣(W [s, t)− 1w(s)T
)
ij

∣∣∣ ≤ Cσt−s

for any i, j and any t > s ≥ 0. The constants C, σ and η only depend on the number of agents

N and the lower bound of the positive entries ϵ. Furthermore, w(s) = 1
N 1 if each W (t) is

doubly-stochastic.

The proof of Theorem 6.1 is postponed to Appendix 6.A.

Theorem 6.1 lies at the core of the analysis of many distributed averaging/consensus opti-

mization algorithms for time-varying communication networks. In the next section, we provide an

example to show how Theorem 6.1 can be applied to analyze the extension of the radio-consensus

method with time-varying communication networks.

Exercise 6.2. Under the setting of Theorem 6.1, show that the vectors w(s), s = 0, 1, 2, . . .

satisfy

w(s)T = w(t)TW [s, t)

for all t > s ≥ 0.

(Hint: Show the identity

1
(
w(s)T − w(t)TW [s, t)

)
= 1w(s)T −W [s, τ) +

(
(W [t, τ)− 1w(t)T

)
W [s, t)

for any τ > t, and then use Theorem 6.1 to find the limit of the right-hand side as

τ →∞.)

Exercise 6.3. Under the setting of Theorem 6.1, suppose there exists a sequence of vectors

w̃(s) ∈ RN , s = 0, 1, 2, . . . such that all entries of w̃(s) are nonnegative, 1Tw̃(s) = 1 and

w̃(s)T = w̃(t)TW [s, t)

for all t > s ≥ 0. Let w(s), s = 0, 1, 2, . . . denote the vectors obtained from Theorem 6.1.

117

1. Show that

w̃(s)T − w(s)T = w̃(t)T(W [s, t)− 1w(s)T)

for all t > s ≥ 0.

2. Show that w̃(s) = w(s) for all s ∈ N.

Exercise 6.4. Suppose we work under the setting of Theorem 6.1. Let b ∈ RN and

t > s ≥ 0 be arbitrary, and let

a = W [s, t)b.

Show that ∥∥a− 1w(t)Ta
∥∥ ≤ CNσt−s

∥∥b− 1w(s)Tb
∥∥ ,

where the constants C and σ are from Theorem 6.1.

6.2 The Push-Sum Method for Distributed Averaging

Let G(t) = ({1, . . . , E(t)}) be a sequence of strongly connected directed graphs of which every

node has a self-loop. Suppose each agent i is associated with a given vector xi, and the goal of the

group of agents is to find the average value 1
N

∑N
i=1 xi via local computation and coordination

through the time-varying communication network.

To design a distributed averaging algorithm for this problem setup, we consider adapting the

ratio consensus method (2.7) to the time-varying setting:

yi(t+ 1) =

N∑
j=1

Wij(t)yj(t), yi(0) = xi,

zi(t+ 1) =

N∑
j=1

Wij(t)zj(t), zi(0) = 1,

xi(t) =
yi(t)

zi(t)
.

(6.1)

Here the weights are taken as

Wij(t) =

1

|{k : (j, k) ∈ E(t)}|
, (j, i) ∈ E(t),

0, (j, i) /∈ E(t),

where |{k : (j, k) ∈ E(t)}| denotes the number of elements in the set {k : (j, k) ∈ E(t)}, which is

equal to the number of out-neighbors of node j (excluding j itself) plus 1. Note that we have
1
N ≤Wii(t) ≤ 1 and W (t)T1 = 1 for every i, indicating that W (t) is a column-stochastic matrix

with positive diagonals. Moreover, Wij(t) ≥ 1/N whenever Wij(t) > 0.

118

The iterations (6.1) can be written in the following compact form:

Y(t+ 1) = W (t)Y(t), Y(0) =

— xT

1 —
...

— xT
N —

 ,

z(t) = W (t)z(t), z(0) = 1,

X(t) = Z(t)−1Y(t),

where

Y(t) :=

— y1(t)

T —
...

— yN (t)T —

 , X(t) :=

— x1(t)

T —
...

— xN (t)T —

 ,

and

z(t) :=

z1(t)
...

zN (t)

 , Z(t) := diag(z(t)) =

z1(t)

. . .

zN (t)

 .

The iterations (6.1) are sometimes called the push-sum method.

In order for each xi(t) to be well defined for all t, we need to make sure that no entries of

z(t) become zero. This can be guaranteed by the following lemma:

Lemma 6.1. For every t ∈ N, we have

1

NN−2
≤ zi(t) ≤ N

for all i = 1, . . . , N .

Exercise 6.5. In this exercise, you are asked to prove Lemma 6.1 by the following steps:

1. Show that every element of zi(t) is nonnegative and 1Tzi(t) = N for each t ∈ N. Then
conclude that zi(t) ≤ N for all i = 1, . . . , N and t ∈ N.

2. By using Wii(t) ≥ 1/N , show that

zi(t) ≥
1

N t
, ∀i = 1, . . . , N, ∀t ∈ N.

3. Exercise 6.1 shows that all entries of W [t, t+N − 1) are lower bounded by 1/NN−1.

Use this fact to show that

zi(t) ≥
1

NN−2
, ∀i = 1, . . . , N

whenever t ≥ N − 1.

(Hint: Note that z(t) = W [t − N + 1, t)z(t − N + 1) when t ≥ N − 1, and use

1Tz(t−N + 1) = 1.)

119

4. Conclude that zi(t) ≥ 1/NN−2 for all i = 1, . . . , N and t ∈ N.

Theorem 6.1 requires each weight matrix to be row-stochastic. However, the weight matrices

in the push-sum method are column-stochastic. In order to exploit Theorem 6.1, we introduce

the matrices

R(t) = Z(t+ 1)−1W (t)Z(t), ∀t ∈ N,

and denote R[s, t) = R(t− 1) · · ·R(s+ 1)R(s). Note that

R[s, t) = Z(t)−1W (t− 1)Z(t− 1) · Z(t− 1)−1W (t− 2)Z(t− 2) · · ·Z(s+ 1)−1W (s)Z(s)

= Z(t)−1W [s, t)Z(s),

and thus

X(t) = Z(t)−1Y(t) = Z(t)−1W [0, t)Z(0)Z(0)−1Y(0)

= R[0, t)Y(0),

where we used Z(0) = diag(1) = I. Therefore, the convergence of X(t) can be directly implied

by the convergence of R[0, t) as t → ∞. Also, it is straightforward to check that all entries of

R(t) are nonnegative, and R(t) is compatible with the topology of G(t). Furthermore,

R(t)1 = Z(t+ 1)−1W (t)Z(t)1 = Z(t+ 1)−1W (t)z(t) = Z(t+ 1)−1z(t+ 1) = 1,

showing that each R(t) is row-stochastic, and

Rij(t) =
zj(t)

zi(t+ 1)
Wij(t) ≥

1/NN−2

N
·Wij(t),

from which we see that

Rij(t) > 0 =⇒ Wij(t) > 0 =⇒ Wij(t) >
1

N
=⇒ Rij(t) ≥

1/NN−2

N
· 1
N

=
1

NN
.

Therefore, the sequence of matrices (R(t))t∈N satisfies the conditions of Theorem 6.1. By applying

Theorem 6.1, we see that there exist C > 0, σ ∈ (0, 1), η > 0 and a sequence of vectors

w(s) ∈ RN , s = 0, 1, 2, . . . satisfying wi(s) > 0, ∀i and 1Tw(s) = 1 such that∣∣∣(R[s, t)
)
ij
− wj(s)

∣∣∣ = ∣∣∣(R[s, t)− 1w(s)T
)
ij

∣∣∣ ≤ Cσt.

As a result, we have∥∥X(t)− 1w(0)TY(0)
∥∥
F
=
∥∥(R[0, t)− 1w(0)T

)
Y(0)

∥∥
F

=
∥∥(R[0, t)− 1w(0)T

) (
I − 1w(0)T

)
Y(0)

∥∥
F

≤
∥∥R[0, t)− 1w(0)T

∥∥
2

∥∥(I − 1w(0)T
)
Y(0)

∥∥
F

≤ N ·max
i,j

∣∣∣(R[0, t)− 1w(0)T
)
ij

∣∣∣ · ∥∥Y(0)− 1w(0)TY(0)
∥∥
F

≤ CNσt ·
∥∥Y(0)− 1w(0)TY(0)

∥∥
F
,

120

where in the second step we used R[0, t)− 1w(0)T =
(
R[0, t)− 1w(0)T

) (
I − 1w(0)T

)
, and in the

fourth step we used ∥A∥2 ≤ N maxi,j |Aij | for any A ∈ RN×N .

Our last step in the convergence analysis is to find w(0), which can be done by noting that

the vectors 1
N z(s) satisfy

1

N
z(t+ 1)TR[s, t) =

1

N
z(t+ 1)TZ(t+ 1)−1W [s, t)Z(s)

=
1

N
1TW [s, t)Z(s)

=
1

N
1TZ(s)

=
1

N
z(s)T

for any t > s ≥ 0. Then since each entry of z(s) is positive and 1T
(

1
N z(s)

)
= 1, we can apply

the results of Exercise 6.3 to conclude that

w(s) =
1

N
z(s), ∀s ∈ N,

and especially, w(0) = 1
N z(0) = 1

N 1. We finally get∥∥∥∥X(t)− 1

N
11TY(0)

∥∥∥∥
F

≤ CNσt

∥∥∥∥Y(0)− 1

N
11TY(0)

∥∥∥∥
F

,

showing that each xi(t) converges to
1
N

∑N
j=1 xj exponentially fast as t→∞.

Exercise 6.6. For each t ∈ N, let W (t) be a column-stochastic matrix whose associated

directed graph is strongly connected. Suppose all diagonal entries of W (t) are positive,

and all positive entries of W (t) are uniformly lower bounded by some constant ϵ > 0. Let

z(t) = W [0, t)1, Z(t) = diag(z1(t), . . . , zN (t)),

and

R(t) = Z(t+ 1)−1W (t)Z(t).

Show that for arbitrary b ∈ RN , t > s ≥ 0 and a = R[s, t)b, we have∥∥∥∥a− 1

N
1z(t)Ta

∥∥∥∥ ≤ CNσt−s

∥∥∥∥b− 1

N
1z(s)Tb

∥∥∥∥ .

6.3 Relaxing the Strong Connectivity Condition

Theorem 6.1 requires that at each time t, the graph G(t) is strongly connected, which may not

be satisfied in some practical scenarios. In this subsection, we present one approach that can

relax this condition.

121

Definition 6.2. A sequence of directed graphs G(t) = ({1, . . . , N}, E(t)), t ∈ N is called B-

strongly connected, if for any t ∈ N, the union graph

t+B−1⋃
k=t

G(k) := ({1, . . . , N}, E(t) ∪ E(t+ 1) ∪ · · · ∪ E(t+B − 1))

is strongly connected.

The following lemma allows us to relax the strong connectivity condition in Theorem 6.1:

Lemma 6.2. For each t ∈ N, let W (t) ∈ RN×N be a matrix with nonnegative entries and let

G(t) = ({1, . . . , N}, E(t)) be its associated directed graph. Suppose the following conditions are

satisfied:

1. Wii > 0 for all i = 1, . . . , N and all t ∈ N.

2. There exists ϵ > 0 such that for all t ∈ N, we have Wij(t) ≥ ϵ whenever Wij(t) > 0.

Then for each t ∈ N and δ ∈ N\{0}, we have

1.
(
W [t, t+ δ)

)
ij
≥ ϵδ whenever (j, i) ∈ E(t) ∪ · · · ∪ E(t+ δ − 1).

2.
(
W [t, t+ δ)

)
ij
≥ ϵδ whenever

(
W [t, t+ δ)

)
ij
̸= 0.

Proof. It’s straightforward to see that all entries of W [t, t+ δ) are nonnegative. We shall prove

the statement by mathematical induction. The initial case δ = 1 is obvious. Then suppose the

statement hold for some δ ≥ 1. For the diagonal elements of W [t, t+ δ + 1), we have

(
W [t, t+ δ + 1)

)
ii
=

N∑
k=1

(
W (t+ δ)

)
ik

(
W [t, t+ δ)

)
ki

≥
(
W (t+ δ)

)
ii

(
W [t, t+ δ)

)
ii
≥ ϵ · ϵδ = ϵδ+1.

For the off-diagonal elements, we have

(
W [t, t+ δ + 1)

)
ij
=

N∑
k=1

(
W (t+ δ)

)
ik

(
W [t, t+ δ)

)
kj
. (6.2)

If (j, i) ∈ E(t+ δ), then(
W [t, t+ δ + 1)

)
ij
≥
(
W (t+ δ)

)
ij

(
W [t, t+ δ)

)
jj
≥ ϵ · ϵδ = ϵδ+1,

while if (j, i) ∈ E(t) ∪ · · · E(t+ δ − 1), by the induction hypothesis, we get(
W [t, t+ δ + 1)

)
ij
≥
(
W (t+ δ)

)
ii

(
W [t, t+ δ)

)
ij
≥ ϵ · ϵδ = ϵδ+1.

Therefore
(
W [t, t+δ+1)

)
ij
≥ ϵδ whenever (j, i) ∈ E(t)∪· · ·∪E(t+δ−1)∪E(t+δ). Now suppose(

W [t, t+δ+1)
)
ij
̸= 0. By (6.2) and the nonnegativity of the entries, there must exist some index

k∗ such that
(
W (t+ δ))ik∗ > 0 and

(
W [t, t+ δ)

)
k∗j

> 0. We then have
(
W (t+ δ))ik∗ > ϵ by our

assumption on W (t+ δ) and
(
W [t, t+ δ)

)
k∗j
≥ ϵδ by the induction hypothesis. As a result,(

W [t, t+ δ + 1)
)
ij
≥
(
W (t+ δ)

)
ik∗

(
W [t, t+ δ)

)
k∗j
≥ ϵ · ϵδ = ϵδ+1.

We can now complete the proof by induction on δ.

122

As a corollary, we have the following extension of Theorem 6.1:

Theorem 6.2. For each t ∈ N, let W (t) ∈ RN×N be a weight matrix, and let G(t) =

({1, . . . , N}, E(t)) be its associated directed graph. Suppose the following conditions are satis-

fied:

1. The sequence of graphs (G(t))t∈N is B-strongly connected for some positive integer B.

2. Each W (t) is row-stochastic.

3. Wii(t) > 0 for all i = 1, . . . , N and all t ∈ N.

4. There exists ϵ > 0 such that for any t ∈ N, Wij(t) ≥ ϵ whenever Wij > 0.

Then there exist C > 0, σ ∈ (0, 1), η > 0 and a sequence of vectors

w(s) ∈
{
w ∈ RN : wi ≥ η, ∀i and 1Tw = 1

}
, s = 0, 1, 2, . . .

such that ∣∣∣(W [s, t)
)
ij
− wj(s)

∣∣∣ ≤ Cσt−s

for any i, j and any t > s ≥ 0. The constants C, σ and η only depend on the number of agents

N , the lower bound of the positive entries ϵ and B. Furthermore, w(s) = 1
N 1 if each W (t) is

doubly-stochastic.

Proof. Fix s ∈ N. For each k ∈ N, denote

D(k; s) = W (s+ (k + 1)B − 1) · · ·W (s+ kB + 1) ·W (s+ kB)

= W [s+ kB, s+ (k + 1)B),

and let G̃(k; s) = {{1, . . . , N}, Ẽ(k, s)} be the directed graph satisfying

(j, i) ∈ Ẽ(k; s) ⇐⇒ Dij(k; s) > 0.

By Lemma 6.2, Dij(k; s) ≥ ϵB whenever Dij(k; s) > 0, and

B−1⋃
i=0

E(s+ kB + i) ⊆ Ẽ(k; s).

Since (G(t))t∈N is B-strongly connected, each G̃(k; s) is strongly connected. Moreover, it’s

straightforward to check that D(k; s)1 = 1 for all k ∈ N, and that every node in G̃(k; s) has

a self-loop. By Theorem 6.1, there exist C̃s > 0, σ̃s ∈ (0, 1), ηs > 0 and a vector w(s) ∈ RN

satisfying

wj(s) ≥ ηs, ∀j and 1Tw(s) = 1,

such that ∣∣∣(D(k − 1; s)D(k − 2; s) · · ·D(0; s)
)
ij
− w̃j(s)

∣∣∣ ≤ C̃sσ̃
k
s

for any i, j and any k > 0. Since C̃s, σ̃s and ηs only depends on N and ϵB , we can drop their

subscripts s.

123

Now let t > s ≥ 0 be arbitrary, and let τ = ⌊(t− s)/B⌋. When τ > 0, we have

W [s, t) = W [s+ τB, t)D(τ − 1; s) · · ·D(0; s),

(we let W [s+ τt, t) = I if s+ τt = t). Note that

(
W [s, t)

)
ij
=

N∑
k=1

(
W [s+ τB, t)

)
ik

(
D(τ − 1; s) · · ·D(0; s)

)
kj

≤ max
1≤k≤N

(
D(τ − 1; s) · · ·D(0; s)

)
kj
·

N∑
k=1

(
W [s+ τB, t)

)
ik

= max
1≤k≤N

(
D(τ − 1; s) · · ·D(0; s)

)
kj
,

where we used W [s+ τB, t)1 = 1, and similarly

(
W [s, t)

)
ij
≤ min

1≤k≤N

(
D(τ − 1; s) · · ·D(0; s)

)
kj
·

N∑
k=1

(
W [s+ τB, t)

)
ik

= min
1≤k≤N

(
D(τ − 1; s) · · ·D(0; s)

)
kj
.

Therefore ∣∣∣(W [s, t)
)
ij
− wj(s)

∣∣∣ ≤ max

{∣∣∣∣ max
1≤k≤N

(
D(τ − 1; s) · · ·D(0; s)

)
kj
− wj(s)

∣∣∣∣ ,∣∣∣∣ min
1≤k≤N

(
D(τ − 1; s) · · ·D(0; s)

)
kj
− wj(s)

∣∣∣∣
}

≤ C̃σ̃τ ≤ C̃σ̃(t−s)/B .

When τ = 0, we have t− s ≤ B − 1 and∣∣∣(W [s, t)
)
ij
− wj(s)

∣∣∣ ≤ ∣∣∣(W [s, t)
)
ij

∣∣∣+ |wj(s)| ≤ 2

≤ 2

σ̃1−1/B
σ̃(t−s)/B

By letting C = max{C̃, 2/σ̃1−1/B}, σ = σ̃1/B , we get the desired results.

By using Theorem 6.2, we can prove that for the push-sum algorithm (6.1), xi(t)− 1
N

∑N
j=1 xj

converges exponentially to 0 when the sequence of graphs (Gt)t∈N is only B-strongly connected

for some positive integer B.

6.4 Distributed Optimization over Time-Varying Commu-

nication Networks

In this section, we present a distributed algorithm for consensus optimization over time-varying

networks from the work [Saadatniaki et al., 2020].

124

Consider the consensus optimization problem

min
x∈Rd

1

N

N∑
i=1

fi(x),

where each local cost function fi is continuously differentiable. We assume that an optimal

solution to the above problem exists and denote it by x∗ ∈ Rd. The N agents are connected

by a time-varying communication network whose topology at time t is described by the directed

graph G(t) = ({1, . . . , N}, E(t)).
The algorithm proposed in [Saadatniaki et al., 2020], named the TV-AB algorithm in the

paper, employs two weight matrices A(t) and B(t) compatible with the communication network

at each time step t, with A(t) being row-stochastic and B(t) being column stochastic. The

iterations are given by

xi(t+ 1) =

N∑
j=1

Aij(t)xj(t)− ηgi(t),

gi(t+ 1) =

N∑
j=1

Bij(t)gj(t) +∇fi(xi(t+ 1))−∇fi(xi(t)),

(6.3)

or, written compactly,

X(t+ 1) = A(t)X(t)− ηG(t),

G(t+ 1) = B(t)G(t) +∇F (X(t+ 1))−∇F (X(t)).

The algorithm (6.3) is an extension of the following push-pull gradient algorithm [Pu et al., 2021]

to time-varying communication networks:

X(t+ 1) = AX(t)− ηG(t),

G(t+ 1) = BG(t) +∇F (X(t+ 1))−∇F (X(t)),
(6.4)

which is an extension of the basic gradient tracking algorithm (4.1) to (time-invariant) directed

communication networks.

Remark 6.1. Note that in both TV-AB (6.3) and the push-pull gradient algorithm (6.4), there

are no extra variables zi(t) that are used to scale the entries of the variables xi(t). An intuitive

explanation is as follows: First consider the simpler case with time-invariant strongly connected

networks. As t becomes sufficiently large, by the Perron–Frobenius Theorem, we have

Bt ≈ ν1T,

where ν ∈ RN is a vector with positive entries that sum up to 1. We can then intuitively expect

that

G(t) ≈ ν1T∇F (X(t))

when t is sufficiently large. We also have

At ≈ 1µT

125

for sufficiently large t, where µ ∈ RN is a vector with positive entries that sum up to 1. As a

result, we intuitively expect that, for sufficiently large t,

X(t) ≈ 1µTX(t).

Then the iteration of X(t) gives

µTX(t+ 1) ≈ µTX(t)− ηµTν1T∇F (1µTX(t)),

and if we denote x̃(t) = µTX(t) and η̃ = NηµTν, we get

x̃(t+ 1) ≈ x̃(t)− η̃
1

N

N∑
i=1

∇fi(x̃(t)),

which just follows an approximate gradient descent update. For the time-varying setting, the

vectors µ and ν will become dependent on t, and the analysis will rely on Theorem (6.1) or (6.2)

to bound the consensus errors and the optimality gap.

The following theorem establishes the convergence of TV-AB for strongly convex problems:

Theorem 6.3 ([Saadatniaki et al., 2020]). Suppose each fi is L-smooth, and the global objective

function f is µ-strongly convex. Suppose the weight matrices A(t) and B(t) are compatible with

the graph G(t), and further the following conditions hold:

1. Each A(t) is row-stochastic, and each B(t) is column-stochastic, i.e., all entries of A(t) and

B(t) are nonnegative, and A(t)1 = B(t)T1 = 1.

2. All nodes of G(t) have self-loops, i.e., (i, i) ∈ E(t) for all i and all t.

3. The sequence of graphs (G(t))t∈N is B-strongly connected for some positive integer B.

4. There exists ϵ > 0 such that Aij(t) ≥ ϵ and Bij(t) ≥ ϵ whenever (j, i) ∈ E(t).

Then we have

∥X(t)− 1x∗∥F ≤ O(ρ(η)t),

where ρ(η) > 0 will be strictly less than 1 for sufficiently small η.

Notes on References

The materials in this chapter are based on a series of papers that study distributed averag-

ing/consensus optimization methods over time-varying communication networks, including the

early seminal work [Tsitsiklis et al., 1986] that established a large proportion of the theoretical

tools for analyzing time-varying networks, and also the more recent works including [Jadbabaie

et al., 2003], [Nedić and Ozdaglar, 2009], [Nedić et al., 2009], [Nedić and Olshevsky, 2014], [Nedić

and Liu, 2017], [Nedić et al., 2017], [Saadatniaki et al., 2020], etc. Some of the technical details,

including Exercise 6.1 and Part II of the proof of Theorem 6.1, are adapted from or inspired

by [Bullo, 2022, Chapter 12].

126

6.A Proof of Theorem 6.1

Part I: Row-stochastic case. We first consider the case where each W (t) is not assumed be

doubly stochastic. We fix an arbitrary s ∈ N, and denote

D(k; s) = W (s+ (k + 1)(N − 1)− 1) · · ·W (s+ k(N − 1) + 1) ·W (s+ k(N − 1))

= W [s+ k(N − 1), s+ (k + 1)(N − 1)), k ∈ N.

By the results of Exercise 6.1, all entries of D(k, s) are greater than or equal to ϵN−1.

Now let u(0) ∈ RN be arbitrary, and let

u(k + 1) = D(k; s)u(k)

for each k ≥ 0. We denote hmin(k) = argminh zh(k) and hmax(k) = argmaxh zh(k) for any k ≥ 0

(ties are broken arbitrarily). Then

ui(k + 1)− uj(k + 1) =

N∑
h=1

(Dih(k; s)−Djh(k; s))uh(k)

=

N∑
h=1

(Dih(k; s)−Djh(k; s))
(
uh(k)− uhmin(k)(k)

)
=

∑
h ̸=hmin(k)

(Dih(k; s)−Djh(k; s))
(
uh(k)− uhmin(k)(k)

)
≤
(
uhmax(k)

(k)− uhmin(k)(k)
) ∑
h̸=hmin(k)

(Dih(k; s)−Djh(k; s))

≤
(
uhmax(k)

(k)− uhmin(k)(k)
) ∑
h ̸=hmin(k)

Dih(k; s)

= (uhmax(k)
(k)− uhmin(k)(k))(1− ϵN−1),

where in the second step we used
∑N

h=1 Dih(k, s) =
∑N

h=1 Djh(k, s) = 1. As a result,

max
1≤h≤N

uh(k + 1)− min
1≤h≤N

uh(k + 1) ≤ (1− ϵN−1)

(
max

1≤h≤N
uh(k)− min

1≤h≤N
uh(k)

)
and consequently

max
1≤h≤N

uh(k)− min
1≤h≤N

uh(k) ≤ (1− ϵN−1)k
(

max
1≤h≤N

uh(0)− min
1≤h≤N

uh(0)

)
.

Now, to show that u(k) converges as k →∞, we note that for all i,

ui(k + 1) =

N∑
j=1

Dij(k; s)uj(k)

=

N∑
j=1

Dij(k; s)
(
uj(k)− uhmin(k)(k)

)
+ uhmin(k)(k)

N∑
j=1

Dij(k; s)

127

≤
(
uhmax(k)(k)− uhmin(k)(k)

) N∑
j=1

Dij(k; s) + uhmin(k)(k)

= uhmin(k)(k) +
(
uhmax(k)(k)− uhmin(k)(k)

)
,

which implies

uhmin(k+1)(k + 1)− uhmin(k)(k) ≤ (1− ϵN−1)k
(

max
1≤h≤N

uh(0)− min
1≤h≤N

uh(0)

)
.

Furthermore,

uhmin(k+1)(k + 1) =

N∑
j=1

Dhmin(k+1),j(k; s)uj(k)

≥ uhmin(k)(k)

N∑
j=1

Dhmin(k+1),j(k; s) = uhmin(k)(k).

Therefore

0 ≤ uhmin(k+1)(k + 1)− uhmin(k)(k) ≤ (1− ϵN−1)k
(

max
1≤h≤N

uh(0)− min
1≤h≤N

uh(0)

)
,

which further implies

0 ≤ uhmin(k+j)(k + j)− uhmin(k)(k) ≤
j−1∑
i=0

(1− ϵN−1)k+i

(
max

1≤h≤N
uh(0)− min

1≤h≤N
uh(0)

)
≤ (1− ϵN−1)k

ϵN−1

(
max

1≤h≤N
uh(0)− min

1≤h≤N
uh(0)

)
for any k, j ∈ N. Therefore (uhmin(k)(k))k∈N is a Cauchy sequence and converges to some u(∞)

as k →∞. By letting j →∞ in the above inequality, we get

|uhmin(k)(k)− u(∞)| ≤ (1− ϵN−1)k

ϵN−1

(
max

1≤h≤N
uh(0)− min

1≤h≤N
uh(0)

)
.

Then for any i, we have

|ui(k + 1)− u(∞)| ≤
∣∣uhmax(k)(k)− uhmin(k)(k)

∣∣+ ∣∣uhmin(k)(k)− u(∞)
∣∣

≤
(
1 + ϵ1−N

)
(1− ϵN−1)k

(
max

1≤h≤N
uh(0)− min

1≤h≤N
uh(0)

)
.

Now by letting u(0) = ej for each standard basis vector ej ∈ RN and let the corresponding u(∞)

be denoted by wj(s), we get∣∣∣(D(k − 1; s) · · ·D(0; s)
)
ij
− wj(s)

∣∣∣ ≤ (1 + ϵ1−N
)
(1− ϵN−1)k.

Now let t > s ≥ 0 be arbitrary. We can now use similar techniques in the second half of the

proof of Theorem 6.2 to prove that∣∣∣(W [s, t)
)
ij
− wj(s)

∣∣∣ ≤ C(1− ϵN−1)t−s

128

for some C > 0 that depends only on ϵ and N , and we omit the details here. To show that wj(s)

has a uniform lower bound η, we use mathematical induction to show that
(
D(k; s) · · ·D(0; s)

)
ij
≥

ϵN−1 for all k ∈ N. The initial case can be justified by Exercise 6.1. Now suppose(
D(k; s) · · ·D(0; s)

)
ij
≥ ϵN−1

for some k ∈ N. We have

(
D(k + 1; s) · · ·D(0; s)

)
ij
=

N∑
h=1

Dih(k + 1; s)
(
D(k; s) · · ·D(0; s)

)
hj

≥
N∑

h=1

Dih(k + 1; s) · ϵN−1 = ϵN−1.

By mathematical induction we get
(
D(k; s) · · ·D(0; s)

)
ij
≥ ϵN−1 for all k ∈ N, and by taking

the limit k →∞ we get wj(s) ≥ ϵN−1.

Part II. Doubly stochastic case. We now impose the further assumption that each W (t) is

doubly stochastic. For any E ⊆ {1, . . . , N} × {1, . . . , N}, denote

P(E) = {P ∈ RN×N : P = PT, P1 = 1, Pij ≥ ϵ2, ∀(j, i) ∈ E , Pij = 0, ∀(j, i) /∈ E},

and let C denote the subset of the power set of {1, . . . , N} × {1, . . . , N} such that E ∈ C if and

only if ({1, . . . , N}, E) is undirected, strongly connected and (i, i) ∈ E for all i = 1, . . . , N . It’s

not hard to see that C is a finite set, and consequently

PC :=
⋃
E∈C
P(E)

is a compact set. Moreover, for any P ∈ PC , by the Perron-Frobenius Theorem, we have∥∥∥∥P − 1

N
11T

∥∥∥∥
2

< 1.

Therefore

σ := sup
P∈PC

∥∥∥∥P − 1

N
11T

∥∥∥∥
2

< 1.

It’s not hard to see that σ only depends on ϵ and N .

Now let u(0) ∈ RN be arbitrary, and let

u(t+ 1) = W (t)u(t), t ∈ N.

Since each W (t) is doubly stochastic, we have

1

N
1Tu(t+ 1) =

1

N
1TW (t)u(t) =

1

N
1Tu(t) = · · · = 1

N
1Tu(0).

Define

V (t) :=
1

2

∥∥∥∥u(t)− 1

N
11Tu(0)

∥∥∥∥2 =
1

2

∥∥∥∥(I − 1

N
11T

)
u(t)

∥∥∥∥2 .
129

We then have

V (t+ 1) =
1

2

∥∥∥∥(I − 1

N
11T

)
W (t)u(t)

∥∥∥∥2
=

1

2

∥∥∥∥(W (t)− 1

N
11T

)(
I − 1

N
11T

)
u(t)

∥∥∥∥2
≤ 1

2

∥∥∥∥W (t)− 1

N
11T

∥∥∥∥2
2

·
∥∥∥∥(I − 1

N
11T

)
u(t)

∥∥∥∥2
2

=
1

2

∥∥∥∥W (t)TW (t)− 1

N
11T

∥∥∥∥
2

V (t).

It’s not hard to check that W (t)TW (t) ∈ PC , and therefore

V (t+ 1) ≤ σV (t).

We can now see that ∥u(t)− 1
N 11Tu(0)∥ converges exponentially to zero with rate

√
σ. By the

arbitrariness of u(0) ∈ RN , we conclude that

max
i,j

∣∣∣∣(W [0, t)
)
ij
− 1

N

∣∣∣∣ ≤ Cσt/2

for some constant C > 0 that only depends on N and ϵ. The bound for
∣∣∣(W [s, t)

)
ij
− 1

N

∣∣∣ for
arbitrary t > s ≥ 0 is straightforward.

Remark 6.2. It can be shown that the rate σ has an explicit upper bound:

σ ≤ 1− ϵ

2N2
.

We refer to [Nedić et al., 2009, Lemma 9] for more details.

Bibliography

[Bullo, 2022] Bullo, F. (2022). Lectures on Network Systems. Kindle Direct Publishing, 1.6

edition.

[Jadbabaie et al., 2003] Jadbabaie, A., Lin, J., and Morse, A. S. (2003). Coordination of groups

of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on automatic

control, 48(6):988–1001.

[Nedić and Liu, 2017] Nedić, A. and Liu, J. (2017). On convergence rate of weighted-averaging

dynamics for consensus problems. IEEE Transactions on Automatic Control, 62(2):766–781.

[Nedić and Olshevsky, 2014] Nedić, A. and Olshevsky, A. (2014). Distributed optimization over

time-varying directed graphs. IEEE Transactions on Automatic Control, 60(3):601–615.

[Nedić et al., 2009] Nedić, A., Olshevsky, A., Ozdaglar, A., and Tsitsiklis, J. N. (2009). On

distributed averaging algorithms and quantization effects. IEEE Transactions on automatic

control, 54(11):2506–2517.

130

[Nedić et al., 2017] Nedić, A., Olshevsky, A., and Shi, W. (2017). Achieving geometric conver-

gence for distributed optimization over time-varying graphs. SIAM Journal on Optimization,

27(4):2597–2633.

[Nedić and Ozdaglar, 2009] Nedić, A. and Ozdaglar, A. (2009). Distributed subgradient methods

for multi-agent optimization. IEEE Transactions on Automatic Control, 54(1):48–61.

[Pu et al., 2021] Pu, S., Shi, W., Xu, J., and Nedić, A. (2021). Push–pull gradient methods for

distributed optimization in networks. IEEE Transactions on Automatic Control, 66(1):1–16.

[Saadatniaki et al., 2020] Saadatniaki, F., Xin, R., and Khan, U. A. (2020). Decentralized opti-

mization over time-varying directed graphs with row and column-stochastic matrices. IEEE

Transactions on Automatic Control, 65(11):4769–4780.

[Tsitsiklis et al., 1986] Tsitsiklis, J., Bertsekas, D., and Athans, M. (1986). Distributed asyn-

chronous deterministic and stochastic gradient optimization algorithms. IEEE Transactions

on Automatic Control, 31(9):803–812.

131

Chapter 7

Federated Learning from a

Distributed Optimization

Viewpoint

7.1 Problem Setup

Federated learning is a relatively new topic in machine learning that has caught much interest

across multiple disciplines. In the survey paper [Kairouz et al., 2021], the authors propose the

following definition of federated learning:

Federated learning is a machine learning setting where multiple entities (clients) col-

laborate in solving a machine learning problem, under the coordination of a central server

or service provider. Each client’s raw data is stored locally and not exchanged or trans-

ferred; instead, focused updates intended for immediate aggregation are used to achieve

the learning objective.

Here, by focused updates the authors mean “updates narrowly scoped to contain the minimum

information necessary for the specific learning task at hand”, and “aggregation is performed as

early as possible in the service of data minimization”.

In this chapter, we shall further narrow down our investigation by considering only the

so-called horizontal federated learning setting and viewing it from a distributed optimization

perspective. Specifically, let us consider a cross-device learning task where a large number of

mobile devices (such as phones, tablets, mobile sensors, etc.) are coordinated by a central server

to train a machine learning model, with datasets distributed and locally stored at each mobile

device. We model the task as a distributed optimization problem under the server-worker setup.

We let N denote the number of workers (or clients, which seems a more common terminology

in federated learning) that represent the mobile devices, and suppose each client owns a dataset

Di, i = 1, . . . , N . The communication network will have a star topology with the server placed at

132

the center node. Note that for this cross-device learning task, the communication links, especially

the ones from the devices to the server, will have very limited bandwidth and reliability. The

goal is to solve the following optimization problem:

min
x∈Rd

1

|D|
∑
z∈D

ℓ(z;x), (7.1)

where ℓ(z;x) is the loss function that quantifies how well the parameterized model x fits the single

sample z, and D is the (disjoint) union of all local datasets D1, . . . ,DN . We let pi = |Di|/|D|
denote the proportion of the local dataset Di in the combined dataset D.

Note that the federated learning setting requires that each dataset Di be locally stored at

client i and cannot be revealed to either the central server or other clients. In order to meet this

requirement, we consider reformulating the federated learning problem (7.1) as

min
x∈Rd

1

N

N∑
i=1

fi(x), fi(x) =
piN

|Di|
∑
z∈Di

ℓ(z;x) = Ez∼Pi
[piNℓ(z;x)],

where Pi denotes the uniform distribution over the set Di. This formulation suggests one ap-

proach to implement the stochastic gradient descent iteration:

x(t+ 1) = x(t)− ηt ·
1

N

N∑
i=1

gi(t), (7.2)

where each gi(t) is a stochastic gradient of fi(x), which can be constructed by agent i individually

via sampling a minibatch of B independent points zi,b(t) ∼ Pi, b = 1, . . . , B and form

gi(t) =
piN

B

B∑
b=1

∇xℓ(zi,b(t);x(t)). (7.3)

By further incorporating the communication network, we get the following prototypical algorithm

for solving (7.1):

1. The server sends the current iterate x(t) to all clients.

2. Client i samples a minibatch (zi,b(t))
B
b=1 with zi,b(t) ∼ Pi and construct gi(t) by (7.3).

3. Client i sends gi(t) back to the server.

4. The server collects all gi(t) and conducts the SGD update (7.2).

5. Set t← t+ 1 and go back to Step 1.

The above approach seems to be reasonable if implemented in a data center where the com-

munication between clients and the server is high-speed and reliable and the number of clients

is typically ≲ 1000. However, if the number of clients N becomes much larger (say N ∼ 106

to 1010) and the communication links have limited bandwidth and reliability, which is the case

for cross-device federated learning tasks, the above procedure will soon encounter the following

bottlenecks:

133

• The upload of the local gradients gi(t) to the server may take a very long time, due to both

the huge N and the limited bandwidth. Specifically, if each d-dimensional vector gi(t) is

encoded by Q bits, then the number of bits received by the server per SGD update is NQ,

and it can be very expensive to handle such a large amount of incoming data. Considering

further that the communication links have limited bandwidth, the time it takes for the server

to collect all local gradients may easily unacceptable.

• Not all clients may be available for contributing their local gradients throughout the op-

timization procedure. Some clients may fail or drop out at some time due to unreliable

communication, low battery level, etc. A client may also become slow if the device has

already been running some computationally intensive apps.

In the following sections, we present a basic approach that is intended to address or alleviate

some of the above bottlenecks.

7.2 The Federated Averaging Algorithm

The federated averaging algorithm (abbreviated as FedAvg) [McMahan et al., 2017] is one of the

most common approaches to optimization for federated learning. The basic steps of FedAvg are

given as follows:

1. The server uniformly samples a subset S(t) ⊆ {1, . . . , N} with size |S(t)| = S.

2. The server broadcasts the current iterate x(t) to the clients in the subset S(t).

3. for each i ∈ S(t) in parallel do

4. Client i sets xt
i(0) = x(t).

5. for k = 0, . . . ,K − 1 do

6. Client i samples a minibatch Bti(k) = (zti,b(k))
B
b=1 of B i.i.d. samples from Pi.

7. Client i constructs

gti(k) =
piN

B

B∑
b=1

∇xℓ(z
t
i,b(k);x

t
i(k)),

and updates

xt
i(k + 1) = xt

i(k)− η gti(k).

8. end for

9. Client i ∈ S(t) uploads ∆xi(t+ 1) = xt
i(K)− x(t) to the server.

10. end for

11. The server updates the iterate by

x(t+ 1) = x(t) +
α

S

∑
i∈S(t)

∆xi(t+ 1).

12. Set t← t+ 1 and go back to Line 1 unless t = T − 1.

134

The parameters of the algorithm include the step sizes η > 0 for local SGD update and α > 0

for aggregation, the number of clients queried per iteration S, the batch size B, the number of

inner local SGD updates K, and the total number of outer iterations T .

FedAvg attempts to address the issues caused by large N and limited communication band-

width by the following approaches:

• For each t, the server only queries a subset of the group of clients with size S. This allows

partial participation of the clients in each round of communication and reduces the burden

on the communication links between consecutive updates on x(t).

• After Client i samples a minibatch and obtains a local stochastic gradient gi(t), the client

does not immediately upload gi(t) to the server but rather performs local SGD updates on

its own. Only after K iterations of local SGD will Client i upload the vector xi(t + 1) =

ClientUpdate(i, x(t)) to the server. In this way, the frequency of communication will be

reduced.

As a result, assuming that uploading each d-dimensional vector ∆xi(t+ 1) takes Q bits, we can

see that the number of bits received by the server per local SGD update is SQ/K, which can be

substantially smaller than NQ.

Remark 7.1. Note that in FedAvg, the subset of participating clients S(t) is randomly selected by

the server, and it is assumed that each selected client is able to upload ∆xi(t+1) successfully for

every t. This assumption may not hold in practical applications, and FedAvg may still encounter

issues caused by communication failure or dropped-out devices. However, suppose for each t,

the delays between the server broadcasting x(t) and the server receiving ∆xi(t+ 1) for different

i can be modeled as i.i.d. random variables taking values in (0,+∞], where a +∞ delay means

upload failure, and the delays across different time steps t are independent. Then in this case,

the server may broadcast x(t) to all (or a sufficiently large random subset of) clients, collect the

first S arriving ∆xi(t + 1) and discard all other ∆xi(t + 1); in the rare case when less than S

devices respond, the server collects all ∆xi(t + 1) that have been received. The resulting set of

participating clients will be very close to being uniform sampled from {1, . . . , N}.

Remark 7.2. In the original version of FedAvg, the step size for global aggregation α is simply

chosen to be 1. Here we allow α to take other positive values, which was proposed by [Karimireddy

et al., 2020]. There are also other variants of FedAvg; some adopt different strategies for choosing

the subset of participating clients S(t), and some employ weighted average when aggregating the

local updates ∆xi(t+ 1).

In sum, the whole procedure of FedAvg can be summarized by the following framework:

1. Client selection: This step allows partial participation of clients. The original FedAvg em-

ploys simple uniform sampling (without replacement), but in practice one may employ more

complicated selection strategy to better address the issue of unreliable devices and commu-

nication links.

2. Broadcast: The server broadcasts the current model parameter to the selected clients.

3. Client computation: Each selected client computes an update of the model parameter, using

its locally stored data.

135

4. Aggregation: The server collects the clients’ updates of the model parameters. Stragglers

that cannot upload the updates in time will be dropped.

5. Model update: The server updates the global model parameter based on the aggregated local

updates.

This framework can serve as a very good starting point for designing federated learning algo-

rithms, and also provides sufficient flexibility to accommodate many other techniques including

privacy preservation measures, gradient compression for efficient communication, etc.

7.3 Convergence of Federated Averaging

It turns out that establishing convergence for FedAvg is not an easy task, especially when the

local dataset distributions Pi are different. In the following, we discuss the convergence of FedAvg

for two situations, one with Pi being the same for all i, and the other with Pi being different

from each other.

Identical Local Distributions

Rigorously speaking, the distributions Pi will be different as long as the local datasets Di are

not the same. However, when each local dataset Di contains i.i.d. samples generated from the

same underlying distribution P independently (for example, the local data are generated by the

same experimental procedures independently under identical environment), and the size |Di| is
sufficiently large for all i, we may approximate Pi by P in the theoretical analysis. In this case,

the global objective function becomes

1

N

N∑
i=1

Ez∼P [piNℓ(z;x)] = Ez∼P [ℓ(z;x)].

Then we may redefine fi(x) = Ez∼P [ℓ(z;x)], while sampling from P in FedAvg can be approx-

imated by sampling from Pi. This setting is usually referred to as the IID setting in federated

learning literature, and the resulting FedAvg is sometimes also called local SGD or parallel SGD.

Note that for FedAvg in the IID setting, as long as the total number of participating clients S is

fixed, the detailed client selection strategy does not make a difference.

The convergence of FedAvg in the IID setting (or local/parallel SGD) has been investigated in

a series of papers including [Zhou and Cong, 2018], [Stich, 2019], [Woodworth et al., 2020], [Wang

and Joshi, 2021], etc. The following result was established in [Woodworth et al., 2020].

Theorem 7.1. Suppose f(x) = Ez∼P [ℓ(z;x)] is convex and L-smooth, and has a minimizer

x∗ ∈ Rd. Assume that

Ez∼P

[
∥∇xℓ(z;x)−∇f(x)∥2

]
≤ σ2

for some σ > 0, and that ∥x(0)− x∗∥ ≤ R for some R > 0. Then for α = 1 and η ≤ 1/(4L), we

have

E[f(x̄T)− f(x∗)] ≤ 2R2

ηKT
+

2ησ2

BS
+

8L(S − 1)(K − 1)η2σ2

BS
,

136

where

x̄T :=
1

SKT

T−1∑
t=0

K−1∑
k=0

∑
i∈S(t)

xt
i(k).

Furthermore, by choosing the step size η properly, we can achieve

E[f(x̄T)− f(x∗)] ≤ O

(
Rσ/
√
B√

SKT
+

(Lσ2R4/B)1/3

K1/3T 2/3
+

LR2

KT

)
.

Since each outer iteration of FedAvg consists of one round communication between the server

and the clients, we may count the number of outer iterations T needed to obtain an approximate

optimal solution to characterize the communication complexity of FedAvg. By Theorem 7.1,

it can be shown that, for an arbitrary ϵ > 0, in order to achieve E[f(x̄T) − f(x∗)] ≤ ϵ, the

communication complexity can be upper bounded by

O

(
σ2/B

SKϵ2
+

√
Lσ/
√
B

K1/2ϵ3/2
+

L

Kϵ

)
.

It can be seen that, allowing more local SGD updates K for each participating client will indeed

help reduce the communication complexity of FedAvg.

Connection with peer-to-peer consensus optimization. Note that the iterations of Fe-

dAvg in the IID setting with α = 1 can be equivalently expressed as

xi(t+ 1) =

1

S

S∑
j=1

(xj(t)− ηgj(t)) , K divides t+ 1,

xi(t)− ηgi(t), otherwise,

where gi(t) is a stochastic gradient of fi at xi(t). By introducing the weight matrices

W (t) =

1

S
11T, K divides t+ 1,

I, otherwise,

we can get

xi(t+ 1) =

N∑
j=1

Wij(t) (xj(t)− ηgj(t)) ,

which is equivalent to the diffusion version of the decentralized stochastic gradient descent

(DSGD) iterations with time-varying weight matrices. In addition, it’s not hard to see that

the sequence of weight matrices (W (t))t∈N is K-strongly connected (see Chapter 6). This con-

nection in the underlying mathematical structure suggests us that we may analyze FedAvg by

using tools from DSGD with time-varying weight matrices. In fact, similar ideas were employed

in [Wang and Joshi, 2021] that proposed a unified framework for local-update SGD algorithms.

137

Distinct Local Distributions

The convergence analysis of FedAvg when local distributions Pi are distinct is even more chal-

lenging, and currently there are still related questions that do not yet have satisfactory answers.

The following result is from [Karimireddy et al., 2020].

Theorem 7.2. Suppose each fi is L-smooth and convex, and f(x) has a minimizer x∗. Assume

that there exists σ > 0 such that

Ez∼Pi

[
∥piN∇xℓ(z;x)−∇fi(x)∥2

]
≤ σ2,

and that ∥x(0) − x∗∥ ≤ R for some R > 0. Furthermore, suppose there exist δ > 0 and β > 0

such that

1

N

N∑
i=1

∥∇fi(x)∥2 ≤ δ2 + β2∥∇f(x)∥2. (7.4)

Then by letting α ≥
√
S and η ≤ 1/(8αLK(1 + β2)), we have

E[f(xT)− f(x∗)] ≤ 3R2

αηTK
+

αη

S

[
σ2

B
+ 2K

(
1− S

N

)
δ2
]
+ 54LK2α2η2δ2,

where xT = 1
T

∑T−1
t=0 x(t). Furthermore, by choosing the step sizes α and η properly, we can

achieve

E[f(xT)− f(x∗)] ≤ O

(
R√
SKT

√
σ2

B
+ 2K

(
1− S

N

)
δ2 +

(Lδ2R4)1/3

(T + 1)2/3
+

β2LR2

T

)
.

The condition (7.4) in Theorem 7.2 is called (δ, β)-bounded gradient dissimilarity by [Karim-

ireddy et al., 2020]. Some special cases when this condition holds include:

• In the IID case where fi(x) = f(x) for all i, we have δ = 0 and β = 1.

• When the local gradients ∇fi(x) satisfy

1

N

N∑
i=1

∥∇fi(x)−∇f(x)∥2 ≤ δ̃2

for some δ̃ > 0, we then have

1

N

N∑
i=1

∥∇fi(x)∥2 ≤
1

N

N∑
i=1

∥∇fi(x)−∇f(x) +∇f(x)∥2

≤ 2

N

N∑
i=1

(
∥∇fi(x)−∇f(x)∥2 + ∥∇f(x)∥2

)
≤ 2δ̃2 + 2,

which gives δ =
√
2δ̃ and β =

√
2.

• When each fi is L-smooth and µ-strongly convex, denote

∆ = f(x∗)− 1

N

N∑
i=1

min
x

fi(x).

138

Then we have

1

N

N∑
i=1

∥∇fi(x)∥2 ≤
2L

N

N∑
i=1

(
fi(x)−min

y
fi(y)

)
= 2L

(
f(x)− 1

N

N∑
i=1

min
y

fi(y)

)
= 2L(f(x)− f(x∗)) + 2L∆

≤ L

µ
∥∇f(x)∥2 + 2L∆,

where the first step follows from ∥∇h(x)∥2 ≤ 2L(h(x)− infy h(y)) for any lower-bounded L-

smooth function h, and the last step follows from h(y) ≤ h(x)+ ⟨∇h(x), y−x⟩+ 1
2µ∥∇h(y)−

∇h(x)∥2 for continuously differentiable and µ-strongly convex h (see [Nesterov, 2018, Theo-

rem 2.1.10]). We get δ =
√
2L∆ and β =

√
L/µ.

The above cases indicate that the pair (δ, β) indeed quantifies the dissimilarities between the

local cost functions fi.

By Theorem 7.2, we can derive the communication complexity bound of FedAvg with distinct

Pi given by

O

(
σ2/B

SKϵ2
+

(
1− S

N

)
δ2

Sϵ2
+

√
Lδ

ϵ3/2
+

β2L

ϵ

)
.

Here we keep the constants δ and β in the complexity bound to illustrate how the dissimilarities

between fi affect the complexity; also note that the quantities L and σ may become worse if

some pi is much larger than 1/N . By comparing the communication complexity bound with the

IID case, we can see that

1. As the local distributions Pi and the proportions pi differ more among the clients, the com-

munication complexity will in general become worse. While this is not a surprising result,

it demonstrates that local datasets being non-IID can indeed lead to challenges in federated

learning.

2. There is only one term in the communication complexity bound that will vanish as K →∞,

and the other three terms are independent of K. As a result, the benefit of increasing the

number of local updates K will ultimately vanish. This is different from the IID setting

where by increasing K we can decrease the communication complexity bound to zero.

Notes on References

This chapter only introduces federated learning from a distributed optimization viewpoint, and

many other interesting and important aspects of federated learning have not been covered. For a

relatively recent introduction and survey to the broad topic of federated learning, we recommend

the paper [Kairouz et al., 2021].

139

Bibliography

[Kairouz et al., 2021] Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji,

A. N., Bonawitz, K., Charles, Z., Cormode, G., Cummings, R., et al. (2021). Advances and

open problems in federated learning. Foundations and Trends® in Machine Learning, 14(1–

2):1–210.

[Karimireddy et al., 2020] Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S., Stich, S., and

Suresh, A. T. (2020). SCAFFOLD: Stochastic controlled averaging for federated learning.

In Proceedings of the 37th International Conference on Machine Learning, volume 119 of

Proceedings of Machine Learning Research, pages 5132–5143.

[McMahan et al., 2017] McMahan, B., Moore, E., Ramage, D., Hampson, S., and Arcas, B.

A. y. (2017). Communication-efficient learning of deep networks from decentralized data.

In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics,

volume 54 of Proceedings of Machine Learning Research, pages 1273–1282.

[Nesterov, 2018] Nesterov, Y. (2018). Lectures on Convex Optimization. Springer, 2 edition.

[Stich, 2019] Stich, S. U. (2019). Local SGD converges fast and communicates little. In Proceed-

ings of the 7th International Conference on Learning Representations (ICLR).

[Wang and Joshi, 2021] Wang, J. and Joshi, G. (2021). Cooperative SGD: A unified framework

for the design and analysis of local-update SGD algorithms. The Journal of Machine Learning

Research, 22(1):9709–9758.

[Woodworth et al., 2020] Woodworth, B., Patel, K. K., Stich, S., Dai, Z., Bullins, B., Mcmahan,

B., Shamir, O., and Srebro, N. (2020). Is local SGD better than minibatch SGD? In Proceed-

ings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of

Machine Learning Research, pages 10334–10343.

[Zhou and Cong, 2018] Zhou, F. and Cong, G. (2018). On the convergence properties of aK-step

averaging stochastic gradient descent algorithm for nonconvex optimization. In Proceedings of

the 27th International Joint Conference on Artificial Intelligence, pages 3219–3227.

140

