

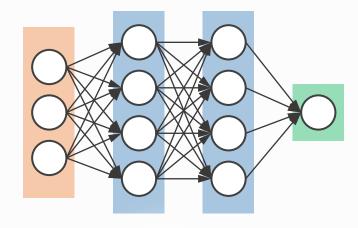
Communication-Efficient Distributed SGD with Compressed Sensing

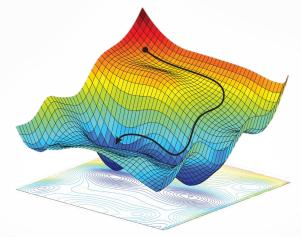
Yujie Tang · Vikram Ramanathan Junshan Zhang · Na Li

Harvard John A. Paulson School of Engineering and Applied Sciences

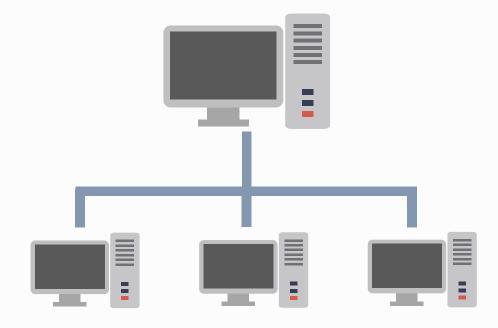
- Motivation & Problem Setup
- Literature Review
- Algorithm Design & Convergence Guarantees
- Numerical Experiments
- Summary & Future Directions

- Motivation & Problem Setup
- Literature Review
- Algorithm Design & Convergence Guarantees
- Numerical Experiments
- Summary & Future Directions

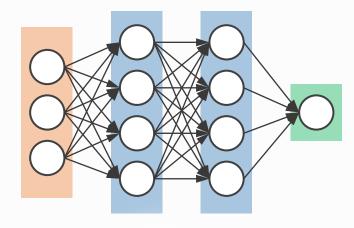


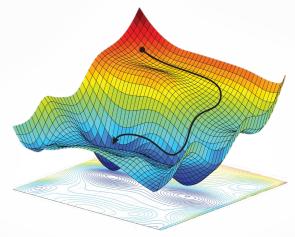


Credit: N. Azizan and B. Hassibi



- Large models
- Massive datasets

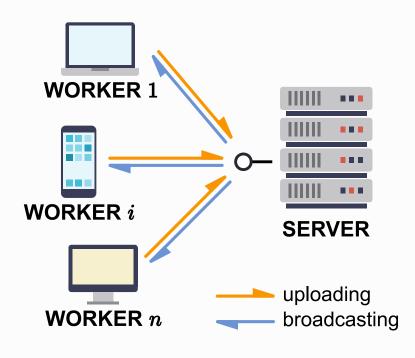




Credit: N. Azizan and B. Hassibi

- Edge devices capable of data collection and processing for machine learning task
- Preferrable to keep data locally
- Wireless channels
 Lossy, unreliable and have limited bandwidth

Problem Setup



Each worker

- $lue{}$ local objective $f_i(x)$, $x \in \mathbb{R}^d$
- \square stochastic gradient $g_i(x)$
 - unbiased: $\mathbb{E}[g_i(x)] = \nabla f_i(x)$

Communication links

- broadcasting
- uploading

The server minimize
$$\frac{1}{n} \sum_{i=1}^{n} f_i(x)$$

A Common Approach



Randomly choose m workers Broadcast x(t)

Each chosen worker:

Query stochastic gradient $g_i(t) = g_i(x(t))$ Upload $g_i(t) \in \mathbb{R}^d$

Server:

Aggregate $g(t) = \frac{1}{m} \sum_i g_i(t)$ Update $x(t+1) = x(t) - \eta g(t)$

A Common Approach

- Collecting local gradients can be costly when d is large
- Reducing m does **not** help: Smaller m requires more iterations.

Server:

Randomly choose m workers Broadcast x(t)

Each chosen worker:

Query stochastic gradient $g_i(t) = g_i(x(t))$ Upload $g_i(t) \in \mathbb{R}^d$

Server:

Aggregate
$$g(t) = \frac{1}{m} \sum_i g_i(t)$$

Update $x(t+1) = x(t) - \eta g(t)$

Update
$$x(t+1) = x(t) - \eta g(t)$$

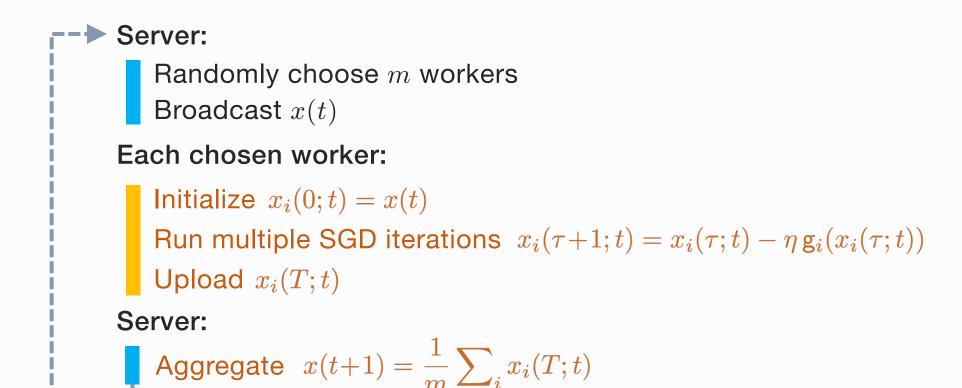
- Motivation & Problem Setup
- Literature Review
- Algorithm Design & Convergence Guarantees
- Numerical Experiments
- Summary & Future Directions

Local SGD/FedAvg

Gradient Compression

Local SGD/FedAvg

Gradient Compression



Local SGD/FedAvg

Gradient Compression

- Application in federated learning [McMahan 2017]
- Convergence for i.i.d. case (identical local objectives/stochastic gradients)
 [Stich 2018a] [Wang 2018] [Yu 2019]
- Convergence for non-i.i.d. case (heterogeneous objectives/stochastic gradients)
 [Li 2018] [Khaled 2019] [Li 2019] [Wang 2020]
 - Requires bounded dissimilarities of local objectives/gradients

Local SGD/FedAvg

Gradient Compression

Quantization

[Seide 2014] [Alistarh 2017] [Bernstein 2018]

Sparsification

[Alistarh 2018] [Wangni 2018]

Error feedback

[Stich 2018b] [Karimireddy 2019]

- ✓ Can handle bias
- ✓ Comparable convergence rate with vanilla SGD

Server:

Randomly choose m workers Broadcast x(t)

Each chosen worker:

Query stochastic gradient $g_i(t) = g_i(x(t))$ Compress $y_i(t) = \mathcal{C}(g_i(t))$ Upload $y_i(t)$

Server:

Decompress and aggregate

$$\hat{g}(t) = \mathcal{U}(\{y_i(t)\})$$

Local SGD/FedAvg

- Quantization & sparsification are nonlinear
- First decompress, then aggregate
- Harder to control the error $\|\hat{g}(t) \frac{1}{m} \sum_{i} g_i(t)\|$
- Error-feedback requires full participation of workers for each iteration.

Gradient Compression

--

Server:

Randomly choose m workers Broadcast x(t)

Each chosen worker:

Query stochastic gradient $g_i(t) = g_i(x(t))$ Compress $y_i(t) = \mathcal{C}(g_i(t))$ Upload $y_i(t)$

Server:

Decompress and aggregate

$$\hat{g}(t) = \frac{1}{m} \sum_{i} \mathcal{U}(y_i(t))$$

Local SGD/FedAvg

Gradient Compression

- Count Sketch
 [Ivkin 2019] [Rothchild 2020]
 - \mathcal{C} is a linear operator
 - $\mathcal U$ recovers the top-K entries of $\frac{1}{m}\sum_i g_i(t)$
 - Incorporates error feedback
 - Replies on approximate sparsity of (error-corrected) aggregated SG

Server:

Randomly choose m workers Broadcast x(t)

Each chosen worker:

Query stochastic gradient $g_i(t) = g_i(x(t))$ Compress $y_i(t) = \mathcal{C}(g_i(t))$ Upload $y_i(t)$

Server:

Aggregate and decompress

$$\hat{g}(t) = \mathcal{U}\left(\frac{1}{m}\sum_{i} y_i(t)\right)$$

Local SGD/FedAvg

Gradient Compression

- Count Sketch
 [Ivkin 2019] [Rothchild 2020]
- First aggregate, then decompress
- Error feedback carried out by the server
- Allows partial participation of workers
- Inconsistency in its theoretical foundation

Server:

Randomly choose m workers Broadcast x(t)

Each chosen worker:

Query stochastic gradient $g_i(t) = g_i(x(t))$ Compress $y_i(t) = \mathcal{C}(g_i(t))$ Upload $y_i(t)$

Server:

Aggregate and decompress

$$\hat{g}(t) = \mathcal{U}\left(\frac{1}{m} \sum_{i} y_i(t)\right)$$

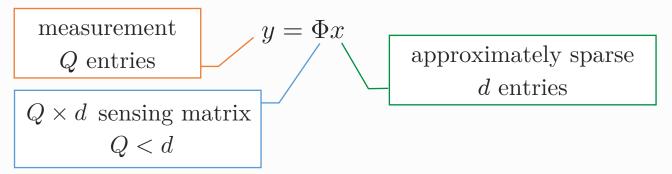
- Motivation & Problem Setup
- Literature Review
- Algorithm Design & Convergence Guarantees
- Numerical Experiments
- Summary & Future Directions

Preliminaries on Compressed Sensing

Preliminaries

Algorithm Design
Convergence

Undetermined noisy linear measurement



- How to design
 - ➤ sensing matrix Φ
 - ightharpoonup reconstruction algorithm to recover the original signal x from y and Φ ?
- Two schemes: for-each and for-all

Preliminaries

Algorithm Design Convergence

For-each scheme

- Construct a probability distribution \mathcal{D} over $Q \times d$ sensing matrices
- Sample a new $\Phi \sim \mathcal{D}$ every time a new signal x is to be measured and reconstructed
- Theoretical guarantees of reconstruction algorithms:

Given Q and d, suppose $K \leq O(Q/\log d)$. Then there exist $\epsilon > 0$ and $\alpha > 0$ depending on K, Q and d, such that for any $x \in \mathbb{R}^d$ that is **deterministic/independent of** Φ ,

$$\mathbb{P}_{\Phi \sim \mathcal{D}}(\|\mathcal{A}(y;\Phi) - x\|_2 \le (1+\epsilon)\|x - x^{[K]}\|_2) \ge 1 - O(d^{-\alpha})$$
reconstructed best *K*-sparse approximation of *x*

Preliminaries

Algorithm Design
Convergence

For-each scheme

- Construct a probability distribution \mathcal{D} over $Q \times d$ sensing matrices
- Sample a new $\Phi \sim \mathcal{D}$ every time a new signal x is to be measured and reconstructed
- Theoretical guarantees of reconstruction algorithms:

Given Q and d, suppose $K \leq O(Q/\log d)$. Then there exist $\epsilon > 0$ and $\alpha > 0$ depending on K, Q and d, such that for any $x \in \mathbb{R}^d$ that is **deterministic/independent of** Φ ,

$$\mathbb{P}_{\Phi \sim \mathcal{D}}(\underbrace{\|\mathcal{A}(y;\Phi) - x\|_2}_{\text{reconstruction error}} \leq (1+\epsilon)\underbrace{\|x - x^{[K]}\|_2}_{\text{best K-sparse approximation error}} \geq \underbrace{1 - O(d^{-\alpha})}_{\text{w.h.p.}}$$

Examples: Count Sketch [Charikar 2002], Count-min Sketch [Cormode 2005]

Preliminaries

Algorithm Design
Convergence

For-all scheme

- Construct a single $\Phi \in \mathbb{R}^{Q \times d}$ that satisfies **restricted isometry property**
- Use this sensing matrix for measuring and reconstructing all possible x

A matrix $\Phi \in \mathbb{R}^{Q \times d}$ is said to satisfy (K, δ_K) -restricted isometry **property (RIP)** for some K < d and $\delta_K \in (0, 1)$, if

$$(1 - \delta_K) \|x\|_2^2 \le \|\Phi x\|_2^2 \le (1 + \delta_K) \|x\|_2^2$$

for any x that has at most K nonzero entries.

$$(2K,\delta_{2K})\text{-RIP} \qquad \qquad \|\Phi u - \Phi v\|_2 \geq \sqrt{1-\delta_{2K}}\|u-v\|_2 \text{ for any } u,v \text{ that have at most } K \text{ nonzero entries.}$$

linear measurement $x \mapsto \Phi x$ can discriminate sparse signals

Preliminaries

Algorithm Design
Convergence

For-all scheme

- Construct a single $\Phi \in \mathbb{R}^{Q \times d}$ that satisfies **restricted isometry property**
- Use this sensing matrix for measuring and reconstructing all possible x

A matrix $\Phi \in \mathbb{R}^{Q \times d}$ is said to satisfy (K, δ_K) -restricted isometry **property (RIP)** for some K < d and $\delta_K \in (0, 1)$, if

$$(1 - \delta_K) \|x\|_2^2 \le \|\Phi x\|_2^2 \le (1 + \delta_K) \|x\|_2^2$$

for any x that has at most K nonzero entries.

- How to generate RIP matrices?
 - ✓ Randomized methods (will be explained later)

Preliminaries

Algorithm Design
Convergence

For-all scheme

- Construct a single $\Phi \in \mathbb{R}^{Q \times d}$ that satisfies **restricted isometry property**
- Use this sensing matrix for measuring and reconstructing all possible x

A matrix $\Phi \in \mathbb{R}^{Q \times d}$ is said to satisfy (K, δ_K) -restricted isometry **property (RIP)** for some K < d and $\delta_K \in (0, 1)$, if

$$(1 - \delta_K) \|x\|_2^2 \le \|\Phi x\|_2^2 \le (1 + \delta_K) \|x\|_2^2$$

for any x that has at most K nonzero entries.

• Examples: ℓ_1 minimization [Candès 2005], CoSaMP [Needell 2009], Fast Iterative Hard Thresholding [Wei 2014]

Approximately solve
$$\min_{z\in\mathbb{R}^d} \ \|z\|_0$$
 s.t. $y=\Phi z$ or $\min_{z\in\mathbb{R}^d} \ \frac{1}{2}\|y-\Phi z\|_2^2$ s.t. $\|z\|_0\leq K$

Preliminaries

Algorithm Design
Convergence

For-all scheme

- Construct a single $\Phi \in \mathbb{R}^{Q \times d}$ that satisfies **restricted isometry property**
- Use this sensing matrix for measuring and reconstructing all possible x

A matrix $\Phi \in \mathbb{R}^{Q \times d}$ is said to satisfy (K, δ_K) -restricted isometry **property (RIP)** for some K < d and $\delta_K \in (0, 1)$, if

$$(1 - \delta_K) \|x\|_2^2 \le \|\Phi x\|_2^2 \le (1 + \delta_K) \|x\|_2^2$$

for any x that has at most K nonzero entries.

- Examples: ℓ_1 minimization [Candès 2005], CoSaMP [Needell 2009], Fast Iterative Hard Thresholding [Wei 2014]
 - \checkmark Theoretical guarantees on reconstruction error when Φ satisfies RIP.

Metric of Sparsity

Preliminaries

Algorithm Design
Convergence

- \triangleright How to quantify the **sparsity** of a signal x?
- ℓ_0 norm: $||x||_0 \coloneqq$ number of nonzero entries of x
 - Not continuous, not robust to small perturbations
 - Cannot characterize approximate sparsity
- An alternative metric [Lopes 2016]:

$$sp(x) := \frac{\|x\|_1^2}{\|x\|_2^2 \cdot d} \in (0,1)$$

- Continuous, robust to small perturbations
- Schur concave: If $||u||_1 = ||v||_1$ and $||u u^{[K]}||_1 \le ||v v^{[K]}||_1$ for all K = 1, ..., d, then $\operatorname{sp}(u) \le \operatorname{sp}(v)$
- Can characterize approximate sparsity

Preliminaries on Compressed Sensing

Preliminaries

Algorithm Design Convergence

For-each scheme

- Construct a probability distribution $\mathcal D$ over $Q \times d$ sensing matrices
- Sample a new $\Phi \sim \mathcal{D}$ every time a new signal x is to be measured and reconstructed

For-all scheme

- Construct a single $\Phi \in \mathbb{R}^{Q \times d}$ that satisfies **restricted isometry property**
- Use this sensing matrix for measuring and reconstructing all possible x

Sparsity metric
$$\operatorname{sp}(x) \coloneqq \frac{\|x\|_1^2}{\|x\|_2^2 \cdot d}$$

- Continuous & Schur concave
- Can characterize approximate sparsity

Preliminaries

Algorithm Design

Convergence

Randomly choose m workers Broadcast x(t)

Each chosen worker:

Query SG
$$g_i(t) = g_i(x(t))$$

Compress $y_i(t) = C(g_i(t))$
Upload $y_i(t)$

Server:

Aggregate and decompress

$$\hat{g}(t) = \mathcal{U}(\{y_i(t)\})$$

Update
$$x(t+1) = x(t) - \eta \hat{g}(t)$$

Preliminaries

Algorithm Design

Convergence

Server generates $\Phi \in \mathbb{R}^{Q \times d}$ and broadcasts it to all workers

- Server:

Randomly choose m workers Broadcast x(t)

Each chosen worker:

Query SG $g_i(t) = g_i(x(t))$ Compress $y_i(t) = \Phi g_i(t)$ Upload $y_i(t)$

Server:

Aggregate and decompress

$$\hat{g}(t) = \mathcal{A}\left(\frac{1}{m}\sum_{i} y_i(t); \Phi\right)$$

- \mathcal{A} : reconstruction algorithm
- Why can we average before reconstruction?
 - ✓ Compression is **linear**
 - $\checkmark \hat{g}(t) \approx \frac{1}{m} \sum_{i} g_i(t)$

Preliminaries

Algorithm Design

Convergence

Server generates $\Phi \in \mathbb{R}^{Q \times d}$ and broadcasts it to all workers

- Server:
 - Randomly choose m workers Broadcast x(t)

Each chosen worker:

Query SG
$$g_i(t) = g_i(x(t))$$

Compress $y_i(t) = \Phi g_i(t)$
Upload $y_i(t)$

Server:

Aggregate and decompress

$$\hat{g}(t) = \mathcal{A}\left(\frac{1}{m}\sum_{i} y_i(t); \Phi\right)$$

Update $x(t+1) = x(t) - \eta \hat{g}(t)$

- A single Φ for all iterations
 - √ For-all scheme
- Inconsistency in the work [Rothchild 2020]:

A **single** Φ for compression and reconstruction in **all** iterations

Count Sketch for generation of Φ and reconstruction \mathcal{A} (for-each scheme)

Preliminaries

Algorithm Design

Convergence

Server generates $\Phi \in \mathbb{R}^{Q \times d}$ and broadcasts it to all workers

- Server:

Randomly choose m workers Broadcast x(t)

Each chosen worker:

Query SG $g_i(t) = g_i(x(t))$ Compress $y_i(t) = \Phi g_i(t)$ Upload $y_i(t)$

Server:

Aggregate and decompress

$$\hat{g}(t) = \mathcal{A}\left(\frac{1}{m}\sum_{i} y_i(t); \Phi\right)$$

- A single Φ for all iterations
 - √ For-all scheme
- Our algorithm
 - ⊕ : Subsampled Fourier matrix
 - A: Fast Iterative Hard Thresholding (FIHT)

Preliminaries

Algorithm Design

Convergence

Φ: Subsampled Fourier matrix

A: Fast Iterative Hard Thresholding (FIHT)

- 1. Let B be the $d \times d$ discrete cosine transform (**DCT**) matrix or Walsh-Hadamard transform (**WHT**) matrix
 - B is orthogonal
 - $|B_{ij}| \leq O(1/\sqrt{d})$
 - Bu and $B^{\top}v$ for any u and v can be computed by $O(d \log d)$ algorithms

Preliminaries

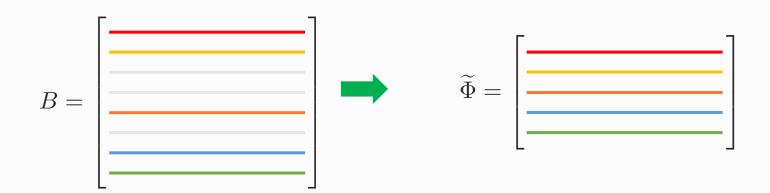
Algorithm Design

Convergence

 Φ : Subsampled Fourier matrix

A: Fast Iterative Hard Thresholding (FIHT)

- 1. Let B be the $d \times d$ discrete cosine transform (**DCT**) matrix or Walsh-Hadamard transform (**WHT**) matrix
- 2. Randomly choose Q rows of B to form a $Q \times d$ submatrix $\widetilde{\Phi}$



Preliminaries

Algorithm Design

Convergence

 Φ : Subsampled Fourier matrix

A: Fast Iterative Hard Thresholding (FIHT)

- 1. Let B be the $d \times d$ discrete cosine transform (DCT) matrix or Walsh-Hadamard transform (WHT) matrix
- 2. Randomly choose Q rows of B to form a $Q \times d$ submatrix $\widetilde{\Phi}$

3. Normalize by
$$\Phi = \sqrt{\frac{d}{Q}} \cdot \widetilde{\Phi}$$

$$B = \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \end{bmatrix}$$

Preliminaries

Algorithm Design

Convergence

 Φ : Subsampled Fourier matrix

A: Fast Iterative Hard Thresholding (FIHT)

- 1. Let B be the $d \times d$ discrete cosine transform (DCT) matrix or Walsh-Hadamard transform (WHT) matrix
- 2. Randomly choose Q rows of B to form a $Q \times d$ submatrix $\widetilde{\Phi}$

3. Normalize by
$$\Phi = \sqrt{\frac{d}{Q}} \cdot \widetilde{\Phi}$$

Theorem. [Haviv 2017] Φ satisfies (K, δ_K) -RIP with high probability when $Q \geq \tilde{O}(K \log^2 K \log d \cdot \delta_K^{-2})$

- \checkmark Broadcasting Φ is easy: Just send the row indices of B
- \checkmark Matrix-vector multiplications Φu and $\Phi^{\top} v$ are fast

Algorithm Design: FIHT

Preliminaries

Algorithm Design

Convergence

Φ: Subsampled Fourier matrix

A: Fast Iterative Hard Thresholding (FIHT)

Fast Iterative Hard Thresholding (FIHT) [Wei 2014]

Greedy algorithm that approximately solves

$$\min_{z \in \mathbb{R}^d} \frac{1}{2} ||y - \Phi z||_2^2$$
 s.t. $||z||_0 \le K$

- Returns a sparse vector with at most K nonzero entries (K tunable)
- Theoretical guarantees on the reconstruction error if Φ satisfies $(4K, \delta_{4K})$ -RIP.
- Empirically, it achieves a good balance between reconstruction error and computation time.

Preliminaries

Algorithm Design

Convergence

Server generates $\Phi \in \mathbb{R}^{Q \times d}$ and broadcasts it to all workers

- Server:

Randomly choose m workers Broadcast x(t)

Each chosen worker:

Query SG
$$g_i(t) = g_i(x(t))$$

Compress $y_i(t) = \Phi g_i(t)$
Upload $y_i(t)$

Server:

Aggregate and decompress

$$\hat{g}(t) = \mathcal{A}\left(\frac{1}{m}\sum_{i} y_i(t); \Phi\right)$$

Update
$$x(t+1) = x(t) - \eta \hat{g}(t)$$

- A single Φ for all iterations
 - √ For-all scheme
- Our algorithm
 - ⊕ : Subsampled Fourier matrix
 - A: Fast Iterative Hard Thresholding (FIHT)
- Reconstruction by A is biased
 - ✓ Incorporate error-feedback

Algorithm Design: Error-Feedback

Preliminaries

Algorithm Design

Convergence

Error-feedback [Stich 2018b] [Karimireddy 2019]

$$g(t) = g(x(t))$$

$$\hat{g}(t) = \mathcal{A}(\Phi g(t); \Phi)$$

$$x(t+1) = x(t) - \eta \hat{g}(t)$$

$$g(t) = \mathrm{g}(x(t))$$
 $p(t) = \eta g(t) + e(t) > \mathrm{error}$ feedback
 $\Delta(t) = \mathcal{A}(\Phi p(t); \Phi)$
 $x(t+1) = x(t) - \Delta(t)$
 $e(t+1) = p(t) - \Delta(t) > \mathrm{error}$ update

Suppose there exists $\gamma < 1$ such that $\|\Delta(t) - p(t)\|_2 \le \gamma \|p(t)\|_2$ for all t. Then SGD with error-feedback converges with rate

$$\frac{1}{T} \sum_{t=1}^{T} \mathbb{E}[\|\nabla f(x(t))\|_{2}^{2}] \le \frac{C_{1}}{\sqrt{T}} + \frac{C_{2}(\gamma)}{T}$$

where C_1 does not depend on γ .

✓ Leading term is **not** affected by compression

Algorithm Outline

Preliminaries

Algorithm Design

Convergence

Server generates $\Phi \in \mathbb{R}^{Q \times d}$ as a subsampled Fourier matrix and broadcasts it to all workers

- Server:

Randomly choose *m* workers Broadcast x(t)

Each chosen worker:

Query stochastic gradient $g_i(t) = g_i(x(t))$ Compress $y_i(t) = \Phi g_i(t)$ Upload $y_i(t) \in \mathbb{R}^Q$

Server:

$$y(t) = \frac{1}{m} \sum_i y_i(t) \quad \text{\Rightarrow aggregation}$$

$$z(t) = \eta \, y(t) + \varepsilon(t) \quad \text{\Rightarrow error feedback}$$

$$\Delta(t) = \mathcal{A}(z(t); \Phi) \quad \text{\Rightarrow reconstruction by FIHT}$$

$$x(t+1) = x(t) - \Delta(t) \quad \text{\Rightarrow SGD update}$$

$$\varepsilon(t+1) = z(t) - \Phi\Delta(t) \quad \text{\Rightarrow error update}$$

Convergence Guarantees

Preliminaries
Algorithm Design
Convergence

T: # of iterations η : step size K: # of nonzero entries in the output of FIHT p(t): error-corrected aggregated SG $\eta \cdot \frac{1}{m} \sum_i g_i(t) + e(t)$

Suppose that Φ satisfies $(4K, \delta_{4K})$ -RIP for sufficiently small δ_{4K} , and that $\operatorname{sp}(p(t)) \leq O\left(\frac{K}{d}\right)$ for all t. Then for sufficiently large T, by choosing $\eta = O(1/\sqrt{T})$, we have $(f \text{ is smooth}) \quad \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}[\|\nabla f(x(t))\|_{2}^{2}] \leq \frac{C}{\sqrt{T}} + O\left(\frac{1}{T}\right)$ $(f \text{ is smooth } \& \text{ convex}) \qquad f(x(t)) - f^{*} \leq \frac{C'}{\sqrt{T}} + O\left(\frac{1}{T}\right)$

Is that the end of the story? No

Convergence Guarantees

Preliminaries
Algorithm Design
Convergence

T: # of iterations η : step size K: # of nonzero entries in the output of FIHT p(t): error-corrected aggregated SG $\eta \cdot \frac{1}{m} \sum_i g_i(t) + e(t)$

Suppose that Φ satisfies $(4K, \delta_{4K})$ -RIP for sufficiently small δ_{4K} , and that

$$\operatorname{sp}(p(t)) \le O\left(\frac{K}{d}\right)$$

for all t. Then for sufficiently large T, by choosing $\eta = O(1/\sqrt{T})$, we have

$$(f \text{ is smooth}) \qquad \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}[\|\nabla f(x(t))\|_{2}^{2}] \le \frac{C}{\sqrt{T}} + O\left(\frac{1}{T}\right)$$

(f is smooth & convex)
$$f(x(t)) - f^* \le \frac{C'}{\sqrt{T}} + O\left(\frac{1}{T}\right)$$

Issues with the condition:

- Hard to check
- Rarely holds in practice
- Empirically, $\operatorname{sp}(g(t)) \leq O(K/d)$ seems to be sufficient

- Motivation & Problem Setup
- Literature Review
- Algorithm Design & Convergence Guarantees
- Numerical Experiments
- Summary & Future Directions

Numerical Experiments

Federated Learning with CIFAR-10 Dataset

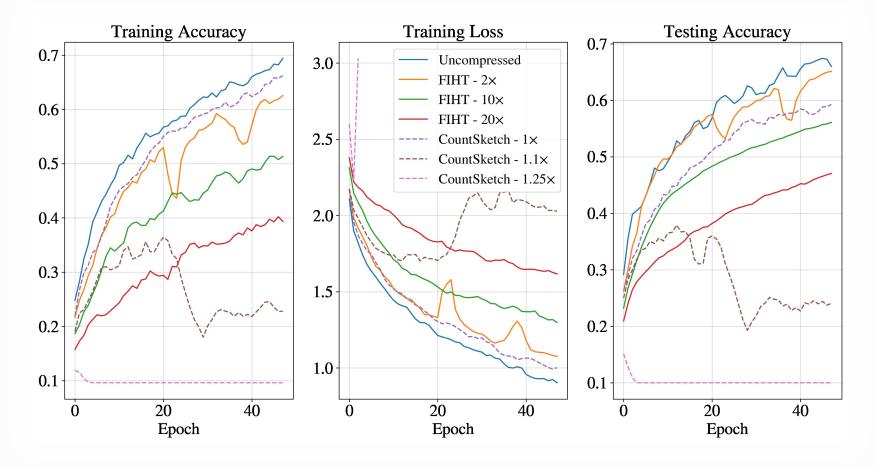
- Model: ResNet with d = 668426 parameters
- Setting 1: i.i.d. local datasets, 100 workers
 - Server queries local gradients from all workers
- Setting 2: non-i.i.d. local datasets, 10000 workers
 - Server queries local gradients from 1% of all workers
- We test two algorithms
 - 1. our algorithm, FIHT + error-feedback
 - Count Sketch + error-feedback
 (the algorithm in [Rothchild 2020] without momentum)

for different compression rates d/Q

Numerical Experiments

Federated Learning with CIFAR-10 Dataset

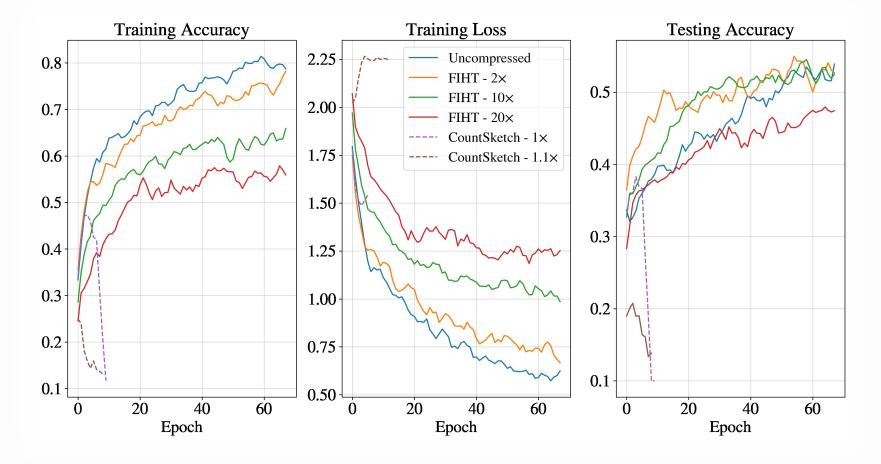
Setting 1: i.i.d. local datasets, 100 workers, full participating, K = 30000



Numerical Experiments

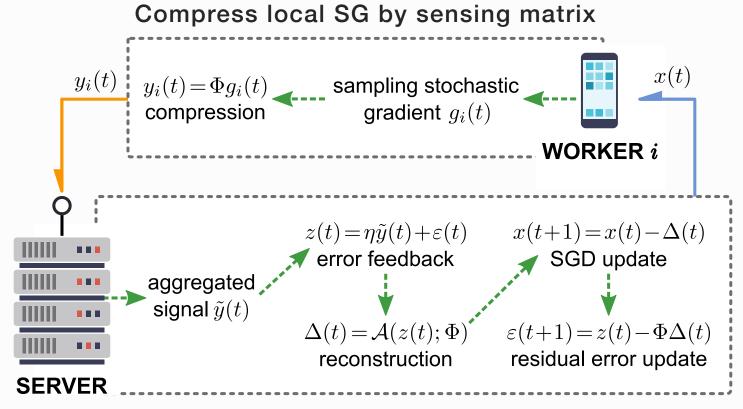
Federated Learning with CIFAR-10 Dataset

* Setting 2: non-i.i.d. local datasets, 10000 workers, 1% participation, K = 30000



- Motivation & Problem Setup
- Literature Review
- Algorithm Design & Convergence Guarantees
- Numerical Experiments
- Summary & Future Directions

Summary



- Sensing matrix:Subsample Fourier matrix
- Reconstruction algorithm:FIHT
- Error feedback

Recover a sparse approximation of the aggregated gradient from the compressed local gradients

Future Directions

- Improving theoretical analysis
- Estimation of sparsity of aggregated gradients
- Extension to decentralized setting
- Extension to gradient-free optimization & reinforcement learning

References

- [McMahan 2017] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-efficient learning of deep networks from decentralized data. In *Proceedings of the 20th International Conference on Artificial Intelligence and Statistics*, pages 1273–1282,2017.
- [Stich 2018a] S. U. Stich. Local SGD converges fast and communicates little. arXiv:1805.09767, 2018.
- [Stich 2018b] S. U. Stich, J.-B. Cordonnier, and M. Jaggi. Sparsified SGD with memory. In *Advances in Neural Information Processing Systems*, volume 31, 2018.
- [Wang 2018] J. Wang and G. Joshi. Cooperative SGD: A unified framework for the design and analysis of communication-efficient SGD algorithms. arXiv:1808.07576, 2018.
- [Yu 2019] H. Yu, S. Yang, and S. Zhu. Parallel restarted SGD with faster convergence and less communication: Demystifying why model averaging works for deep learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 33, pages 5693–5700, 2019.
- [Li 2018] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith. Federated optimization in heterogeneous networks. arXiv:1812.06127, 2018.
- [Khaled 2019] A. Khaled, K. Mishchenko, and P. Richtárik. First analysis of local GD on heterogeneous data. arXiv:1909.04715, 2019.
- [Li 2019] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang. On the convergence of FedAvg on non-IID data. arXiv:1907.02189, 2019.
- [Wang 2020] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor. Tackling the objective inconsistency problem in heterogeneous federated optimization. In *Advances in Neural Information Processing Systems*, volume 33, pages 7611–7623, 2020.
- [Seide 2014] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 1-bit stochastic gradient descent and its application to data-parallel distributed training of speech DNNs. In *Fifteenth Annual Conference of the International Speech Communication Association*, 2014.
- [Alistarh 2017] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic. QSGD: Communication-efficient SGD via gradient quantization and encoding. In *Advances in Neural Information Processing Systems*, volume 30, 2017.
- [Alistarh 2018] D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov, S. Khirirat, and C. Renggli. The convergence of sparsified gradient methods. In *Advances in Neural Information Processing Systems*, volume 31. Curran Associates, Inc., 2018

References

- [Bernstein 2018] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar. signSGD: Compressed optimisation for non-convex problems. In *Proceedings of the 35th International Conference on Machine Learning*, pages 560–569, 2018.
- [Wangni 2018] J. Wangni, J. Wang, J. Liu, and T. Zhang. Gradient sparsification for communication-efficient distributed optimization. In *Proceedings of the 32nd International Conference on Neural Information Processing Systems*, page 1306–1316, 2018.
- [Karimireddy 2019] S. P. Karimireddy, Q. Rebjock, S. Stich, and M. Jaggi. Error feedback fixes signSGD and other gradient compression schemes. In *International Conference on Machine Learning*, pages 3252–3261, 2019.
- [Ivkin 2019] N. Ivkin, D. Rothchild, E. Ullah, V. braverman, I. Stoica, and R. Arora. Communication-efficient distributed SGD with sketching. In Advances in Neural Information Processing Systems, volume 32, 2019.
- [Rothchild 2020] D. Rothchild, A. Panda, E. Ullah, N. Ivkin, I. Stoica, V. Braverman, J. Gonzalez, and R. Arora. FetchSGD: Communication-efficient federated learning with sketching. In *International Conference on Machine Learning*, pages 8253–8265, 2020.
- [Charikar 2002] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data streams. In *International Colloquium on Automata, Languages, and Programming*, pages 693–703. Springer, 2002.
- [Cormode 2005] G. Cormode and S. Muthukrishnan. An improved data stream summary: the count-min sketch and its applications. *Journal of Algorithms*, 55(1):58–75, 2005.
- [Candès 2005] E. J. Candès and T. Tao. Decoding by linear programming. IEEE Transactions on Information Theory, 51(12):4203–4215, 2005.
- [Needell 2009] D. Needell and J. A. Tropp. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. *Applied and Computational Harmonic Analysis*, 26(3):301–321, 2009.
- [Wei 2014] K. Wei. Fast iterative hard thresholding for compressed sensing. IEEE Signal Processing Letters, 22(5):593-597, 2014.
- [Lopez 2016] M. E. Lopes. Unknown sparsity in compressed sensing: Denoising and inference. *IEEE Transactions on Information Theory*, 62(9):5145–5166, 2016.
- [Haviv 2017] I. Haviv and O. Regev. The restricted isometry property of subsampled Fourier matrices. In *Geometric aspects of functional analysis*, pages 163–179. Springer, 2017.