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Large models
Massive datasets
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- Edge devices capable of data collection and processing

for machine learning task
- Preferrable to keep data locally

 Wireless channels
Lossy, unreliable and have limited bandwidth
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Problem Setup

Each worker
0 local objective fi(z), = € R

WORKER]\ NI s ] stochastic gradient gZ(ZIf)
T = unbiased: E[g;(z)] = Vfi(z)

_— O— il s

TGS L :
WORKERz/ Communication links
SERVER
 broadcasting ] uploading

——== uploading
WORKER n ~a— broadcasting

rERA

A e
The server minimize - Zfz(a:)

Communication-Efficient SGD with Compressed Sensing 6



A Common Approach
- Server:
WORKER \ -
T

I Randomly choose m workers
- O— Il
T

Broadcast x(t)
WORKER i
/ SERVER
D ——== uploading

WORKER n ~a— broadcasting

Each chosen worker:

Query stochastic gradient g;(t) = gi(z(t))
Upload g;(t) € R?

Server: .
I Aggregate g(t) =—» gi(t)

| Update z(t+1) = z(t) — ng(t)
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A Common Approach

-9 Server:

I Randomly choose m workers
Broadcast x(t)

= (Collecting local gradients can

be costly when d is large

= Reducing m does not help: Each chosen worker:

Smaller m requires more

Query stochastic gradient g;(t) = gi(z(t))
Upload g;(t) € R?

iterations.

Server:

I Aggregate g(t) = Z gi(t

Update x(t+1) = z(t) — ng(t)
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Communication-Efficient SGD

Local SGD/FedAvg Gradient Compression
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Communication-Efficient SGD

Local SGD/FedAvg

-=9 Server:

I Randomly choose m workers
Broadcast x(t)

Each chosen worker:
Initialize x;(0;t) = z(?)
Run multiple SGD iterations z;(7+1;t) = z;(7;t) — ng;(z;(7;1))
Upload x;(T’;t)

Server:

I Aggregate z(t+1) Z z; (T t)
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Communication-Efficient SGD

Local SGD/FedAvg

« Application in federated learning [McMahan 2017]

« Convergence for i.i.d. case (identical local objectives/stochastic gradients)
[Stich 2018a] [Wang 2018] [Yu 2019]

« Convergence for non-i.i.d. case (heterogeneous objectives/stochastic gradients)
[Li 2018] [Khaled 2019] [Li 2019] [Wang 2020]

* Requires bounded dissimilarities of local objectives/gradients
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Communication-Efficient SGD

Gradient Compression

- Quantization P Server:

|
[Seide 2014] [Alistarh 2017] [Bernstein 2018] I Randomly choose m workers

. Broadcast x(t)
« Sparsification

[Alistarh 2018] [Wangni 2018] Each chosen worker:

|
|
|
|
|
|
E Query stochastic gradient g;(t) = g;(z(t))
i Compress y;(t) = C(gi(t))
* Error feedback | Upload v;(t)
[Stich 2018b] [Karimireddy 2019] :
v'Can handle bias |
I
|
|
|
|
|

v Comparable convergence rate with
vanilla SGD

Server:
Decompress and aggregate

g9(t) = U({y:(t)})
Update x(t+1) = x(t) — ng(t)
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Communication-Efficient SGD

Gradient Compression

P Server:
: Randomly choose m workers
Broadcast x(t)

* Quantization & sparsification
are nonlinear

« First decompress, then aggregate Each chosen worker:

Query stochastic gradient g;(t) = g;(x(1))
Compress y;(t) = C(gi(t))
Upload y;(t)

 Harder to control the error

15(t) = & 2 9: ()]

« Error-feedback requires full
participation of workers for each
iteration.

Server:
Decompress and aggregate

9(t) = — >~ Uly(t)
Update x(t+1) = x(t) — ng(t)

Communication-Efficient SGD with Compressed Sensing 14



Communication-Efficient SGD

Gradient Compression

- Count Sketch :"V Server:
[Ilvkin 2019] [Rothchild 2020] Randomly choose m workers
Broadcast x(t)

- C is alinear operator
Each chosen worker:

Query stochastic gradient g;(t) = g;(x(1))
Compress y;(t) = C(gi(t))
Upload y;(t)

* U recovers the top-K entries
of % Zz gi(t)
* Incorporates error feedback

* Replies on approximate sparsity Server:

Aggregate and decompress

§t) =u (> u)

Update x(t+1) = x(t) — ng(t)

of (error-corrected) aggregated SG

Communication-Efficient SGD with Compressed Sensing 15



Communication-Efficient SGD

Gradient Compression

- Count Sketch :"V Server:
[Ilvkin 2019] [Rothchild 2020] Randomly choose m workers
Broadcast x(t)

* First aggregate, then decompress
Each chosen worker:

Query stochastic gradient g;(t) = g;(x(1))
Compress y;(t) = C(gi(t))
Upload y;(t)

2 Error feedback carried out by the
server

2 Allows partial participation of

workers Server:

Aggregate and decompress

gt) =u(- > vilh))

Update x(t+1) = x(t) — ng(t)

* Inconsistency in its theoretical
foundation

Communication-Efficient SGD with Compressed Sensing 16
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Preliminaries
Algorithm Design

Convergence

Preliminaries on Compressed Sensing

Undetermined noisy linear measurement

measurement

() entries /

y = dx

@ X d sensing matrix
Q<d

/L

approximately sparse
d entries

How to design

sensing matrix @

reconstruction algorithm

to recover the original signal x from y and & ?

Two schemes: for-each and for-all

Communication-Efficient SGD with Compressed Sensing
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Preliminaries

Algorithm Design

Convergence

Two Schemes of Compressed Sensing

For-each scheme

= Construct a probability distribution D over ) x d sensing matrices

= Sample a new ® ~ D every time a new signal z is to be measured and
reconstructed

= Theoretical guarantees of reconstruction algorithms:

Given ) and d, suppose K < O(Q/logd). Then there exist € > 0
and o > 0 depending on K, @ and d, such that for any z € R?

that is deterministic/independent of &,

Pop(|lAy: @) — ]2 < (L+e)llz — 2F]2) > 1 - O(d~*)

reconstructed best K-sparse
signal approximation of x

Communication-Efficient SGD with Compressed Sensing



Preliminaries

Algorithm Design

Convergence

Two Schemes of Compressed Sensing

For-each scheme

= Construct a probability distribution D over ) x d sensing matrices

= Sample a new ® ~ D every time a new signal z is to be measured and
reconstructed

= Theoretical guarantees of reconstruction algorithms:

Given ) and d, suppose K < O(Q/logd). Then there exist € > 0
and o > 0 depending on K, @ and d, such that for any z € R?

that is deterministic/independent of &,

Po~p(||A(y; @) — 22 < (1+€)||w—$ 2) >1-0(d™)
reconstruction error best K—sparse w.h.p.

approximation error

Communication-Efficient SGD with Compressed Sensing

= Examples: Count Sketch [Charikar 2002], Count-min Sketch [Cormode 2005]
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Two Schemes of Compressed Sensing

Preliminaries For-all scheme

Algorithm Design = Construct a single ¢ € R®*4 that satisfies restricted isometry property

Convergence = Use this sensing matrix for measuring and reconstructing all possible x

A matrix ® € R®*? is said to satisfy (K, )-restricted isometry
property (RIP) for some K < d and dx € (0,1), if

(1= dr)llzllz < lPzllz < (1 +0x)ll=])3

for any x that has at most K nonzero entries.

|Pu—Pv||s > /1—bak||u—v|2 forany u, v that
have at most K nonzero entries.

) S

linear measurement x — ®x can discriminate sparse signals

(2K, 525 )-RIP s

Communication-Efficient SGD with Compressed Sensing 21



Preliminaries
Algorithm Design

Convergence

Two Schemes of Compressed Sensing

For-all scheme

= Construct a single ® € R®*9 that satisfies restricted isometry property
= Use this sensing matrix for measuring and reconstructing all possible x

A matrix ® € R®*? is said to satisfy (K, )-restricted isometry
property (RIP) for some K < d and dx € (0,1), if

(1= dr)llzllz < lPzllz < (1 +0x)ll=])3

for any x that has at most K nonzero entries.

= How to generate RIP matrices?

v" Randomized methods (will be explained later)

Communication-Efficient SGD with Compressed Sensing
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Two Schemes of Compressed Sensing

Preliminaries For-all scheme

Algorithm Design = Construct a single ¢ € R®*4 that satisfies restricted isometry property

Convergence = Use this sensing matrix for measuring and reconstructing all possible x

A matrix ® € R®*? is said to satisfy (K, )-restricted isometry
property (RIP) for some K < d and dx € (0,1), if

(1= dr)llzllz < lPzllz < (1 +0x)ll=])3

for any x that has at most K nonzero entries.

= Examples: ¢; minimization [Candés 2005], CoSaMP [Needell 2009],
Fast Iterative Hard Thresholding [Wei 2014]

Approximately solve min,cra ||2]l0 s.t. y= Pz

or min,epa 3ly—Pz[3 st 2o <K

Communication-Efficient SGD with Compressed Sensing 23



Two Schemes of Compressed Sensing

Preliminaries For-all scheme

Algorithm Design = Construct a single ¢ € R®*4 that satisfies restricted isometry property

Convergence = Use this sensing matrix for measuring and reconstructing all possible x

A matrix ® € R®*? is said to satisfy (K, )-restricted isometry
property (RIP) for some K < d and dx € (0,1), if

(1= dr)llzllz < lPzllz < (1 +0x)ll=])3

for any x that has at most K nonzero entries.

= Examples: ¢; minimization [Candés 2005], CoSaMP [Needell 2009],
Fast Iterative Hard Thresholding [Wei 2014]

v Theoretical guarantees on reconstruction error when & satisfies RIP.

Communication-Efficient SGD with Compressed Sensing 24



Metric of Sparsity

Preliminari : . :
refiminares How to quantify the sparsity of a signal =?

Algorithm Design

] = — D
Convergence lo norm: ||x||o := number of nonzero entries of x
 Not continuous, not robust to small perturbations

« (Cannot characterize approximate sparsity

= An alternative metric [Lopes 2016]:
p(@) = o e (o,1)
|z[|3 - d ’

« Continuous, robust to small perturbations
- Schur concave: If |jul|; = ||v][; and [ju — u! &), < |jv — oE]||;
forall K =1,...,d, then sp(u) <sp(v)

* Can characterize approximate sparsity

Communication-Efficient SGD with Compressed Sensing 25



Preliminaries on Compressed Sensing

Preliminaries
Algorithm Design

Convergence

For-each scheme

= Construct a probability distribution D over ) x d sensing matrices

= Sample a new ® ~ D every time a new signal z is to be measured and
reconstructed

For-all scheme

= Construct a single ® € R®*9 that satisfies restricted isometry property
= Use this sensing matrix for measuring and reconstructing all possible z

2
Sparsity metric sp(z) = ||a|j|r|j—2||1d
2.

= Continuous & Schur concave
= Can characterize approximate sparsity

Communication-Efficient SGD with Compressed Sensing 26



Algorithm Design

Preliminaries

Algorithm Design

Convergence % Server:
9 ' Randomly choose m workers
Broadcast x(t)

Each chosen worker:
Query SG gi(t) = gi(z(t))
Compress y;(t) = C(gi(t))
Upload v;(?)

Server:
Aggregate and decompress

g9(t) =U{y:()})
Update z(t+1) = x(t) — ng(t)

Communication-Efficient SGD with Compressed Sensing 27



Algorithm Design

Preliminaries Server generates ® € R¢*4 and
Algorithm Design broadcasts it to all workers
-p Server:
Convergence

Randomly choose m workers
Broadcast x(t)

Each chosen worker:
Query SG g;(t) = gi(z(1))
Compress y;(t) = ®g;(t)
Upload y;(?)

= A : reconstruction algorithm

= Why can we average before

reconstruction?

Server: C .
v Compression is linear

Aggregate and decompress )
J9red g Vi) = L3 ait)

o) = A (o St

Update z(t+1) = z(t) — n(t)

Communication-Efficient SGD with Compressed Sensing 28



Algorithm Design

Preliminaries Server generates ® € R¥*? and = A single ® for all iterations
Algorithm Design broadcasts it to all workers v For-all scheme
Convergence ~» Server.
9 Randomly choose m workers
Broadcast x(t) % Inconsistency in the work
Each chosen worker: [Rothchild 2020]:
Query SG g;(t) = gi(x()) A single ® for compression
Compress y;(t) = ®gi () and reconstruction in all
Upload y;(t) iterations

Server: I

Aggregate and decompress ,
. Count Sketch for generation
g(t) = A (E > Yi(t); q)) of & and reconstruction A

(for-each scheme)
Update z(t+1) = z(t) — ng(t)

Communication-Efficient SGD with Compressed Sensing 29



Algorithm Design

Preliminaries Server generates ® ¢ R¢*? and = Asingle & for all iterations
Algorithm Design broadcasts it to all workers v For-all scheme
Convergence ~F Server.
9 Randomly choose m workers
Broadcast z(t) % Our algorithm
Each chosen worker: ® : Subsampled Fourier
Query SG g¢;(t) = g;(x(t)) matrix
Compress yi(t) = ®g:(?) A : Fast lterative Hard
Upload ;(t) Thresholding (FIHT)
Server:

Aggregate and decompress
s 1 e
g(t) _ A (m Zz yz(t)a (I))

Update z(t+1) = z(t) — n(t)

Communication-Efficient SGD with Compressed Sensing 30



Algorithm Design: Sensing Matrix

Preliminaries ®: Subsampled Fourier matrix

Algorithm Design : Fast Iterative Hard Thresholding (FIHT)

Convergence 1. Let B be the d x d discrete cosine transform (DCT) matrix

or Walsh-Hadamard transform (WHT) matrix

* B is orthogonal

+ |By| < O(1/Vd)

 Bu and B'v for any u and v can be computed by O(d log d) algorithms

Communication-Efficient SGD with Compressed Sensing 31



Preliminaries
Algorithm Design

Convergence

Algorithm Design: Sensing Matrix

® : Subsampled Fourier matrix
: Fast lterative Hard Thresholding (FIHT)

1. Let B be the d x d discrete cosine transform (DCT) matrix
or Walsh-Hadamard transform (WHT) matrix

2. Randomly choose Q rows of B to form a @Q x d submatrix ®

Communication-Efficient SGD with Compressed Sensing
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Preliminaries
Algorithm Design

Convergence

Algorithm Design: Sensing Matrix

® : Subsampled Fourier matrix
: Fast lterative Hard Thresholding (FIHT)

1. Let B be the d x d discrete cosine transform (DCT) matrix
or Walsh-Hadamard transform (WHT) matrix

2. Randomly choose Q rows of B to form a @Q x d submatrix ®

3. Normalize by & =4/ = -®

Communication-Efficient SGD with Compressed Sensing
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Algorithm Design: Sensing Matrix

Preliminaries ®: Subsampled Fourier matrix

Algorithm Design

Convergence 1. Let B be the d x d discrete cosine transform (DCT) matrix

or Walsh-Hadamard transform (WHT) matrix

2. Randomly choose Q rows of B to form a @ x d submatrix ®

3. Normalize by ® = 0 - P

Theorem. [Haviv 2017] ® satisfies (K, dx )-RIP with high probability
when Q > O(K log” K logd - §2)

v Broadcasting @ is easy: Just send the row indices of B
v' Matrix-vector multiplications ®v and &' v are fast

Communication-Efficient SGD with Compressed Sensing 34



Algorithm Design: FIHT

Preliminaries

Algorithm Design A Fast Iterative Hard Thresholding (FIHT)

Convergence
Fast Iterative Hard Thresholding (FIHT) [wei 2014]

= Greedy algorithm that approximately solves
min, cpd %Hy — ®z||2 st 2|l < K
= Returns a sparse vector with at most K nonzero entries (K tunable)

= Theoretical guarantees on the reconstruction error if ® satisfies
(4K, 4k ) -RIP.

= Empirically, it achieves a good balance between reconstruction

error and computation time.

Communication-Efficient SGD with Compressed Sensing 35



Algorithm Design

Preliminaries Server generates ® € R¥*¢ and = Asingle ® for all iterations
Algorithm Design broadcasts it to all workers / For-all scheme
Convergence :_> Server:
9 ! Randomly choose m workers
! Broadcast z(t) % Our algorithm
i Each chosen worker: ® : Subsampled Fourier
! Query SG g;(t) = gi(x(t)) matrix
i Compress y;(t) = ®g;(?) A : Fast Iterative Hard
| Upload ;(2) Thresholding (FIHT)
| Server:
i Aggregate and decompress = Reconstruction by A is
1 N 1 i
: g(t) — A (E Zz yi(t); CID) biased
! v Incorporate error-feedback
| Update z(t+1) = x(t) — ng(t)
| I |

Communication-Efficient SGD with Compressed Sensing 36



Algorithm Design: Error-Feedback

Preliminaries Error-feedback [Stich 2018b] [Karimireddy 2019]
Algorithm Design g(t) = g(x(t))
Convergence g(t) = glx(t)) p(t) =ng(t) + e(t) » error feedback
g(t) = A(Pg(t); @) A(t) = A(®p(t); @)
r(t+1) = x(t) —ng(t) z(t+1) = z(t) — A(t)

e(t+1) = p(t) — A(t) » error update

Suppose there exists v < 1 such that ||A(¢) — p(t)||2 < v|lp(t)||2
for all . Then SGD with error-feedback converges with rate

Ch 02(7)
Y E(VAE0)B < .

where C; does not depend on 7.

v Leading term is not affected by compression
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Algorithm Outline

Preliminaries Server generates ® € R¢*¢ as a subsampled Fourier matrix

] ] and broadcasts it to all workers
Algorithm Design
-=p Server:

I Randomly choose m workers
Broadcast x(t)

Convergence

Each chosen worker:
Query stochastic gradient g;(t) = gi(z(t))
Compress y;(t) = ®g;(t)
Upload y;(t) € R¥
Server:
y(t) = = >, vi(t) > aggregation
z(t) =ny(t) +e(t) > error feedback
A(t) = A(z(t); ) » reconstruction by FIHT
z(t+1) = x(t) — A(t) » SGD update
e(t+1) = 2z(t) — ®A(t) » error update

Communication-Efficient SGD with Compressed Sensing 38



Convergence Guarantees

Preliminaries T: # of iterations 7: step size K : # of nonzero entries in the output of FIHT
Algorithm Design p(t) : error-corrected aggregated SG 1+ > g:(t) + e(t)
Convergence Suppose that ® satisfies (4K, d4x )-RIP for sufficiently small 45, and that

sp(p(t)) < O( 5 )

for all ¢. Then for sufficiently large T, by choosing n = O(1/vV'T), we have
1

(fissmooth) =" B[V f(x(t))]3 ]<—+O( )

(f is smooth & convex) flx(t) — fF < ﬁ + O(?>

Is that the end of the story? No

Communication-Efficient SGD with Compressed Sensing 39



Convergence Guarantees

Preliminaries T: # of iterations 7: step size K : # of nonzero entries in the output of FIHT
Algorithm Design p(t) : error-corrected aggregated SG 1+ > g:(t) + e(t)
Convergence Suppose that ® satisfies (4K, d4x )-RIP for sufficiently small 45, and that

sp(p(t) < O( 7 )

for all ¢. Then for sufficiently large T, by choosing n = O(1/vV'T), we have
1

(fissmooth) =" B[V f(x(t))]3 ]<—+O( )

(f is smooth & convex) flx(t) — fF < ﬁ + O(?>

Issues with the condition: = Hard to check
= Rarely holds in practice

= Empirically, sp(g(t)) < O(K/d)
seems to be sufficient

Communication-Efficient SGD with Compressed Sensing 40
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Numerical Experiments

Federated Learning with CIFAR-10 Dataset

= Model: ResNet with d = 668426 parameters

% Setting 1: i.i.d. local datasets, 100 workers
« Server queries local gradients from all workers

% Setting 2: non-i.i.d. local datasets, 10000 workers
« Server queries local gradients from 1% of all workers

= We test two algorithms
1. our algorithm, FIHT + error-feedback

2. Count Sketch + error-feedback
(the algorithm in [Rothchild 2020] without momentum)

for different compression rates d/Q

Communication-Efficient SGD with Compressed Sensing 42



Numerical Experiments

Federated Learning with CIFAR-10 Dataset
% Setting 1: i.i.d. local datasets, 100 workers, full participating, K = 30000

Training Accuracy Training Loss 07 Testing Accuracy

3.01 —— Uncompressed

i —— FIHT - 2x

i —— FIHT - 10x

i —— FIHT - 20x

:' ----- CountSketch - 1x

T CountSketch - 1.1x
----- CountSketch - 1.25%

-\ (A
[ S B VRN
N J ~—
-

2.51"

2.0

1.51

~—
Se=o

g 1.0-
e 011 S

0 20 40 0 20 40 0 20 40
Epoch Epoch Epoch
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0.8-
0.7-
0.6-
0.5
0.4-

0.3

0.2-

0.11

Training Accuracy

Numerical Experiments

Federated Learning with CIFAR-10 Dataset

% Setting 2: non-i.i.d. local datasets, 10000 workers, 1% participation, K = 30000

2.251

2.00+

1.751

1.50+

1.25

1.00+

0.751

0.50

~-
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Training Loss Testing Accuracy

—— Uncompressed
—— FIHT - 2x

—— FIHT - 10x

— FIHT - 20
CountSketch - 1x
CountSketch - 1.1x
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Summary

Compress local SG by sensing matrix

(=B - | z(t)
yi(t) _@g% (t) <--- sampllng stochastic <--- E |
compression gradient g;(t)

.............................................. WORKER ¢

Sensing matrix:
Subsample Fourier matrix

z(t)=ny(t)+e(t) r(t+1)=x(t)— A(t)

Reconstruction algorithm:

N oo & error feedback « SGD update . FIHT

Il === aggregated .’ ; R ; E

W =xe — signal g(t) :  « Error feedback
TR Alt)=A(z(t); ®) e(t+1)==z(t)—PA(?) E

—— reconstruction residual error update |

SERVER . e :

Recover a sparse approximation of the aggregated
gradient from the compressed local gradients

Communication-Efficient SGD with Compressed Sensing 46



Future Directions

* Improving theoretical analysis
« Estimation of sparsity of aggregated gradients
« Extension to decentralized setting

« Extension to gradient-free optimization & reinforcement learning

Communication-Efficient SGD with Compressed Sensing 47
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