Introduction to Convex Optimization

EE/CS/EST 135

Feb 12, 2018

Outline

- Motivation
- Recap of Linear Algebra and Real Analysis
- Convex Set
- Convex Function
- Convex Program

Outline

- Motivation
- Recap of Linear Algebra and Real Analysis
- Convex Set
- Convex Function
- Convex Program

 Many practical problems can be modeled as optimization problems:

$$\min_{x} f(x) \qquad x \in X$$

- Optimal Power Flow (OPF)
- EV Charging Scheduling

 Many practical problems can be modeled as optimization problems:

$$\min_{x} f(x) \qquad x \in X$$

- Optimal Power Flow (OPF)
- EV Charging Scheduling
- Convex program
 - X is a convex set
 - f is a convex function

 Many practical problems can be modeled as optimization problems:

$$\min_{x} f(x) \qquad x \in X$$

- Optimal Power Flow (OPF)
- EV Charging Scheduling
- Convex programs have good properties
 - Certificate of global optimality
 - Efficient algorithms exist
 - Powerful modeling capability

Outline

- Motivation
- Recap of Linear Algebra and Real Analysis
- Convex Set
- Convex Function
- Convex Program

- Euclidean space \mathbb{R}^n
- Vectors: $x \in \mathbb{R}^n$ Matrices: $M \in \mathbb{R}^{m \times n}$

- Transpose: M^T x^T
- Rank: $\operatorname{rank} M$
- Trace: $\operatorname{tr} M = \sum_{i} M_{ii}$ $\operatorname{tr}(AB) = \operatorname{tr}(BA)$

- Euclidean space \mathbb{R}^n
- Vectors: $x \in \mathbb{R}^n$ Matrices: $M \in \mathbb{R}^{m \times n}$

- Inner product: $\langle x, y \rangle$
- Norm: $||x|| = \sqrt{\langle x, x \rangle}$
- Orthonormal basis:

$$\{u_1, \dots, u_n\}$$
 $\langle u_i, u_j \rangle = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases}$

- Euclidean space \mathbb{R}^n
- Vectors: $x \in \mathbb{R}^n$ Matrices: $M \in \mathbb{R}^{m \times n}$

- Standard inner product: $\langle x, y \rangle = y^T x$
- Standard norm: $||x|| = \sqrt{\langle x, x \rangle} = \sqrt{x^T x}$
- Orthonormal basis:

$$\{u_1, \dots, u_n\}$$
 $\langle u_i, u_j \rangle = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases}$

Real symmetric matrices

$$\mathbb{S}^n = \{ M \in \mathbb{R}^{n \times n} : M = M^T \}$$

Real symmetric matrices

$$\mathbb{S}^n = \{ M \in \mathbb{R}^{n \times n} : M = M^T \}$$

• Eigenvalue decomposition for $M \in \mathbb{S}^n_+$

$$M = \sum_{i=1}^{n} \lambda_i u_i u_i^T$$

- $Mu_i = \lambda_i u_i$
- $\{u_1,\ldots,u_n\}$ forms an orthonormal basis
- $rank(M) = \#\{i : \lambda_i \neq 0\}$

- \mathbb{S}^n is a real linear space with $\dim \mathbb{S}^n = \frac{1}{2}n(n+1)$
- Inner product:

$$\langle A, B \rangle = \operatorname{tr} (B^T A) = \sum_{i,j=1}^n A_{ij} B_{ij}$$

Frobenius norm:

$$||A||_F := \sqrt{\langle A, A \rangle} = \sqrt{\sum_{i,j=1}^n A_{ij}^2}$$
$$= \sqrt{\sum_{i=1}^n \lambda_i^2}$$

Positive semidefinite (PSD) matrices

$$M = M^T$$
 and $x^T M x \ge 0 \quad \forall x \in \mathbb{R}^n$

• Notation: $M \succeq 0$

• Positive semidefinite (PSD) matrices

$$M = M^T$$
 and $x^T M x \ge 0 \quad \forall x \in \mathbb{R}^n$

- Notation: $M \succeq 0$
- ullet A real symmetric matrix M is PSD iff one of the following holds:
 - ullet The eigenvalues of M are all nonnegative
 - $M = AA^T$ for some matrix A

- ullet A real symmetric matrix M is PSD iff one of the following holds:
 - ullet The eigenvalues of M are all nonnegative
 - $M = AA^T$ for some matrix A

- ullet A real symmetric matrix M is PSD iff one of the following holds:
 - ullet The eigenvalues of M are all nonnegative
 - $M = AA^T$ for some matrix A
- Corollary: A real symmetric matrix M is equal to xx^T for some $x \in \mathbb{R}^n$ iff

$$M \succeq 0$$
 and $\operatorname{rank} M \leq 1$

- Complex linear space \mathbb{C}^n
- Complex transpose: M^H x^H
- Hermitian matrix: $M = M^H$
- PSD matrix: $M = M^H$ and $x^H M x \ge 0 \ \forall x \in \mathbb{C}^n$

- Complex linear space \mathbb{C}^n
- Complex transpose: M^H x^H
- Hermitian matrix: $M = M^H$
- PSD matrix: $M = M^H$ and $x^H M x \ge 0 \ \forall x \in \mathbb{C}^n$

• $M \in \mathbb{C}^{n \times n}$ is PSD iff

$$\begin{bmatrix} \operatorname{Re} M & \operatorname{Im} M \\ -\operatorname{Im} M & \operatorname{Re} M \end{bmatrix} \in \mathbb{S}^{2n} \text{ and is PSD}$$

• Open ball $B_r(x) := \{y : ||y - x|| < r\}, \quad r > 0$

- Open ball $B_r(x) := \{y : ||y x|| < r\}, \quad r > 0$
- Interior point $x \in \operatorname{int} S$

There exists some open ball $B_r(x) \subseteq S$

• Boundary point $x \in \partial S$

For all r > 0, $B_r(x) \not\subseteq S$ and $B_r(x) \cap S \neq \emptyset$

Interior & Boundary

Interior & Boundary

• Open set: $\operatorname{int} S = S$

• Closed set: $\partial S \subseteq S$

Interior & Boundary

- Open set: $\operatorname{int} S = S$
- Closed set: $\partial S \subseteq S$
 - Complement of an open (closed) set is closed (open)
 - Jopen sets is open, Closed sets is closed

Interior & Boundary

- Open set: $\operatorname{int} S = S$
- Closed set: $\partial S \subseteq S$

• Bounded set: there exists some r > 0 s.t. $S \subseteq B_r(0)$

Compact set

- Compact set
 - (Definition) Any open cover has a finite subcover

- Compact set
 - (Definition) Any open cover has a finite subcover
 - (Heine Borel) If $S \subseteq \mathbb{R}^n$, then

S is compact \iff S is closed + bounded

- Compact set
 - (Definition) Any open cover has a finite subcover
 - (Heine Borel) If $S \subseteq \mathbb{R}^n$, then S is compact $\iff S$ is closed + bounded
- Extreme Value Theorem

Suppose X is compact and $f: X \to \mathbb{R}$ is continuous. Then there exist $x_{\min}, x_{\max} \in X$ such that

$$f(x_{\min}) \le f(x) \le f(x_{\max})$$
 for all $x \in X$

 $X\subseteq \mathbb{R}^n$ open, $f:X\to \mathbb{R}$

$$X \subseteq \mathbb{R}^n$$
 open, $f: X \to \mathbb{R}$

• Gradient: $f(x+h) = f(x) + \langle h, \nabla f(x) \rangle + o(\|h\|)$ $\nabla f(x) = \left[\frac{\partial f(x)}{\partial x_i}\right]_{i=1}^n \in \mathbb{R}^n$

$$X\subseteq\mathbb{R}^n$$
 open, $f:X\to\mathbb{R}$

- Gradient: $f(x+h) = f(x) + \langle h, \nabla f(x) \rangle + o(\|h\|)$ $\nabla f(x) = \left[\frac{\partial f(x)}{\partial x_i}\right]_{i=1}^n \in \mathbb{R}^n$
- Hessian: $\nabla f(x+h) = \nabla f(x) + H_f(x)h + o(\|h\|)$ $H_f(x) = \left[\frac{\partial^2 f}{\partial x_i \partial x_i}\right]_{i,i=1}^n \in \mathbb{S}^n$

$$X\subseteq\mathbb{R}^n$$
 open, $f:X\to\mathbb{R}$

• Gradient:
$$f(x+h) = f(x) + \langle h, \nabla f(x) \rangle + o(\|h\|)$$

$$\nabla f(x) = \left[\frac{\partial f(x)}{\partial x_i}\right]_{i=1}^n \in \mathbb{R}^n$$

• Hessian:
$$\nabla f(x+h) = \nabla f(x) + H_f(x)h + o(\|h\|)$$

$$H_f(x) = \left[\frac{\partial^2 f}{\partial x_i \partial x_j}\right]_{i,j=1}^n \in \mathbb{S}^n$$

$$f(x+h) = f(x) + \langle h, \nabla f(x) \rangle + \frac{1}{2}h^T H_f(x)h + o(\|h\|^2)$$

Outline

- Motivation
- Recap of Linear Algebra and Real Analysis
- Convex Set
- Convex Function
- Convex Program

Convex Set

• Line segment: $[x, y] := \{\alpha x + (1 - \alpha)y : \alpha \in [0, 1]\}$

• S is called **convex** if $[x,y] \subseteq S$ for all $x,y \in S$

Convex Set

- Convex hull conv(S)
 - The union of all line segments [x,y] for all $x,y \in S$
 - ullet The smallest convex set containing S

Examples of Convex Sets

Examples of Convex Sets

Hyperplanes

$$\{x \in \mathbb{R}^n : \langle x, a \rangle = b\} \ a \neq 0$$

Halfspaces

$$\{x \in \mathbb{R}^n : \langle x, a \rangle \le b\} \ \ a \ne 0$$

Examples of Convex Sets

Hyperplanes

$$\{x \in \mathbb{R}^n : \langle x, a \rangle = b\} \ a \neq 0$$

Halfspaces

$$\{x \in \mathbb{R}^n : \langle x, a \rangle \le b\} \ \ a \ne 0$$

Open and closed balls

$$B_r(x) := \{y : ||y - x|| < r\}, \quad r > 0$$

$$\overline{B}_r(x) := \{ y : ||y - x|| \le r \}, \quad r \ge 0$$

 $S_1, S_2 \subseteq \mathbb{R}^n$ convex

 $S_1, S_2 \subseteq \mathbb{R}^n$ convex

Separating Hyperplane Theorem

If int $S_1 \neq \emptyset$ and $S_2 \cap \operatorname{int} S_1 = \emptyset$, then there exists

a nonzero $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$ such that

$$\langle x_1, a \rangle \le b \le \langle x_2, a \rangle$$

for any $x_1 \in S_1$ and $x_2 \in S_2$

 $S_1, S_2 \subseteq \mathbb{R}^n$ convex

Separating Hyperplane Theorem

If int $S_1 \neq \emptyset$ and $S_2 \cap \operatorname{int} S_1 = \emptyset$, then there exists

a nonzero $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$ such that

$$\langle x_1, a \rangle \le b \le \langle x_2, a \rangle$$

for any $x_1 \in S_1$ and $x_2 \in S_2$

In other words,
$$S_1 \subseteq \{x : \langle x, a \rangle \leq b\}$$
 $S_2 \subseteq \{x : \langle x, a \rangle \geq b\}$

• $S\subseteq \mathbb{R}^n$ is called a **cone** if for any $x\in S$ and any positive scalar lpha , ones has $lpha x\in S$

- $S\subseteq \mathbb{R}^n$ is called a **cone** if for any $x\in S$ and any positive scalar α , ones has $\alpha x\in S$
- Examples of convex cones:
 - Nonnegative orthant

$$\mathbb{R}^n_+ := \{ x \in \mathbb{R}^n : x_i \ge 0 \ \forall i \}$$

- $S \subseteq \mathbb{R}^n$ is called a **cone** if for any $x \in S$ and any positive scalar α , ones has $\alpha x \in S$
- Examples of convex cones:
 - Nonnegative orthant \mathbb{R}^n_+
 - Second-order cone

$$L^n := \left\{ (x, t) \in \mathbb{R}^{n+1} : \sqrt{x^T x} \le t \right\}$$

- $S\subseteq \mathbb{R}^n$ is called a **cone** if for any $x\in S$ and any positive scalar α , ones has $\alpha x\in S$
- Examples of convex cones:
 - Nonnegative orthant \mathbb{R}^n_+
 - Second-order cone Lⁿ
 - PSD cone

$$\mathbb{S}_{+}^{n} = \{ M \in \mathbb{S}^{n} : M \succeq 0 \}$$

- Nonnegative orthant \mathbb{R}^n_+
- Second-order cone L^n
- PSD cone \mathbb{S}^n_+

- Nonnegative orthant \mathbb{R}^n_+
- Second-order cone L^n
- PSD cone \mathbb{S}^n_+

- 1. Closed
- 2. Non-empty interior
- 3. Pointed

$$x \in K \text{ and } x \neq 0 \Rightarrow -x \notin K$$

4. Self-dual

- Nonnegative orthant \mathbb{R}^n_+ Second-order cone L^n
- PSD cone \mathbb{S}^n_+

- 1. Closed
- 2. Non-empty interior
- 3. Pointed

$$x \in K \text{ and } x \neq 0 \Rightarrow -x \notin K$$

4. Self-dual

 $1+2+3 \Rightarrow Possible to define a partial order:$

We say
$$x \succeq_K y$$
 if $x - y \in K$

$$\begin{array}{lll} \text{partial} & \left\{ \begin{array}{lll} x \succeq_K x & \forall x \\ x \succeq_K y \text{ and } y \succeq_K x & \Rightarrow & x = y \\ x \succeq_K y \text{ and } y \succeq_K z & \Rightarrow & x \succeq_K z \end{array} \right.$$

- Nonnegative orthant \mathbb{R}^n_+
- Second-order cone L^n
- PSD cone \mathbb{S}^n_+

- 1. Closed
- 2. Non-empty interior
- 3. Pointed

$$x \in K \text{ and } x \neq 0 \Rightarrow -x \notin K$$

4. Self-dual

 $1+2+3 \Rightarrow$ Possible to define a partial order:

We say
$$x \succeq_K y$$
 if $x - y \in K$

Self-dual:
$$x \succeq_K 0 \iff \langle x, y \rangle \geq 0 \ \forall y \in K$$

Intersection

Convex sets is convex

- Intersection
 - Convex sets is convex
- Affine transformation
 - $\{Ax + b : x \in S\}$ is convex if S is convex
 - $\{x: Ax + b \in S\}$ is convex if S is convex

- Intersection
 - Convex sets is convex
- Affine transformation
 - $\{Ax + b : x \in S\}$ is convex if S is convex
 - $\{x: Ax + b \in S\}$ is convex if S is convex
- Cartesian product, Minkowski sum, etc.

More Examples of Convex Sets

More Examples of Convex Sets

Convex polytopes

$$\{x \in \mathbb{R}^n : Ax \le b\}$$

$$= \{x \in \mathbb{R}^n : b - Ax \in \mathbb{R}^n_+\}$$

$$= \bigcap_i \{x \in \mathbb{R}^n : a_i^T x \le b_i\}$$

More Examples of Convex Sets

Convex polytopes

$$\{x \in \mathbb{R}^n : Ax \le b\}$$

$$= \{x \in \mathbb{R}^n : b - Ax \in \mathbb{R}^n_+\}$$

$$= \bigcap_i \{x \in \mathbb{R}^n : a_i^T x \le b_i\}$$

Solutions of linear matrix inequalities

$$\{x \in \mathbb{R}^n : x_1 A_1 + \dots + x_n A_n + B \succeq 0\}$$

Outline

- Motivation
- Recap of Linear Algebra and Real Analysis
- Convex Set
- Convex Function
- Convex Program

Convex Function

• A function $f:X\to\mathbb{R}$ with a convex domain X is called **convex** if

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

for all $x, y \in X$ and $\alpha \in [0, 1]$

Convex Function

• A function $f: X \to \mathbb{R}$ with a convex domain X is called **convex** if

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

for all $x, y \in X$ and $\alpha \in [0, 1]$

• ... is called **strictly convex** if

$$f(\alpha x + (1 - \alpha)y) < \alpha f(x) + (1 - \alpha)f(y)$$

for all $x, y \in X$ with $x \neq y$ and $\alpha \in (0, 1)$

Convex Function

• A function $f:X\to\mathbb{R}$ with a convex domain X is called **convex** if

$$\operatorname{epi} f := \{(x, t) \in X \times \mathbb{R} : f(x) \le t\}$$

is convex.

 $f:X \to \mathbb{R}$

$$f: X \to \mathbb{R}$$

• $C_{\alpha} = \{x \in X : f(x) \leq \alpha\}$

$$f: X \to \mathbb{R}$$

- $C_{\alpha} = \{x \in X : f(x) \leq \alpha\}$
- Sublevel sets are convex if f is convex.

First-order Condition

First-order Condition

• A differentiable function $f: X \to \mathbb{R}$ with a convex domain X is convex iff

$$f(y) \ge f(x) + \langle y - x, \nabla f(x) \rangle$$

for all $x, y \in X$

First-order Condition

• A differentiable function $f: X \to \mathbb{R}$ with a convex domain X is convex iff

$$f(y) \ge f(x) + \langle y - x, \nabla f(x) \rangle$$

for all $x, y \in X$

• The tangent plane

$$\left\{ (y,z) : \begin{bmatrix} \nabla f(x) \\ -1 \end{bmatrix}^T \begin{bmatrix} y \\ z \end{bmatrix} = \begin{bmatrix} \nabla f(x) \\ -1 \end{bmatrix}^T \begin{bmatrix} x \\ f(x) \end{bmatrix} \right\}$$

is the hyperplane separating $\operatorname{epi} f$ and $\{(x, f(x))\}$

First-order Condition

• A differentiable function $f: X \to \mathbb{R}$ with a convex domain X is convex iff

$$f(y) \ge f(x) + \langle y - x, \nabla f(x) \rangle$$

for all $x, y \in X$

• ... is strictly convex iff

$$f(y) > f(x) + \langle y - x, \nabla f(x) \rangle$$

for all $x, y \in X$ with $x \neq y$

Second-order Condition

Second-order Condition

• A twice differentiable function $f:X \to \mathbb{R}$ with a convex domain X is convex iff

$$H_f(x) \succeq 0$$

for all $x \in X$

Operations that Preserve Convexity

Positive weighted sum

$$g(x) = \sum_{k} \alpha_k f_k(x)$$
 $\alpha_k \ge 0, \ f_k \text{ convex } \forall k$

Pointwise supremum of a family of convex functions

$$g(x) = \max_k f_k(x)$$
 $f_k \text{ convex } \forall k$ $g(x) = \sup_y f(x, y)$ $f(\cdot, y) \text{ convex } \forall y$

Composition with affine functions

$$g(x) = f(Ax + b)$$
 f convex

Examples of Convex Functions

- f(x) = Ax + b $x \in \mathbb{R}^n$
- $f(x) = \frac{1}{2}x^T M x + p^T x + q$ $x \in \mathbb{R}^n$, $M \succeq 0$
- $f(x) = e^x$ $x \in \mathbb{R}$
- $f(x) = -\log x$ x > 0

Outline

- Motivation
- Recap of Linear Algebra and Real Analysis
- Convex Set
- Convex Function
- Convex Program

Convex Program

$$\min_{x \in \mathbb{R}^n} \quad f(x)$$

s.t. $x \in X$

ullet Convex program: f is convex and X is convex.

Convex Program

$$\min_{x \in \mathbb{R}^n} \quad f(x)$$

s.t. $x \in X$

- ullet Convex program: f is convex and X is convex.
- Any local optimum is a global optimum:

Suppose $x^* \in X$ and there exists $\delta > 0$ such that $f(x^*) \leq f(x)$ for all $x \in X$ with $\|x - x^*\| < \delta$. Then

$$f(x^*) \le f(x)$$
 for all $x \in X$

Conic Program

$$\min_{x \in \mathbb{R}^n} \quad c^T x$$
s.t.
$$Ax \succeq_K b$$

$$Fx = h$$

Conic Program

$$\min_{x \in \mathbb{R}^n} c^T x$$
s.t. $Ax \succeq_K b$

$$Fx = h$$

$$x \succeq_K y$$

$$\Leftrightarrow x - y \in K$$

Conic Program

$$\min_{x \in \mathbb{R}^n} c^T x$$
s.t. $Ax \succeq_K b$

$$Fx = h$$

$$x \succeq_K y$$

$$\Leftrightarrow x - y \in K$$

- $K=\mathbb{R}^n_+$: Linear program (LP)
- $K = \prod_i L^{n_i}$: Second-order cone program (SOCP)
- $K = \mathbb{S}^n_+$: Semidefinite program (SDP)

$$\min_{x \in \mathbb{R}^n} \quad c^T x$$

s.t.
$$Ax \succeq_K b$$

$$Fx = h$$

ullet For a conic program with K being self-dual, the Lagrangian is

$$\min_{x \in \mathbb{R}^n} c^T x$$
s.t. $Ax \succeq_K b$

$$Fx = h$$

$$L(x,\lambda,\mu) = c^T x - \langle \lambda, Ax - b \rangle - \langle \mu, Fx - h \rangle$$
 where $\lambda \in K$

ullet For a conic program with K being self-dual, the Lagrangian is

$$\min_{x \in \mathbb{R}^n} c^T x$$
s.t. $Ax \succeq_K b$

$$Fx = h$$

$$L(x,\lambda,\mu) = c^T x - \langle \lambda, Ax - b \rangle - \langle \mu, Fx - h \rangle$$
 where $\lambda \in K$

$$L(x, \lambda, \mu) \le c^T x \qquad \forall x \in X, \forall \lambda \in K, \forall \mu$$

ullet For a conic program with K being self-dual, the Lagrangian is

$$\min_{x \in \mathbb{R}^n} c^T x$$
s.t. $Ax \succeq_K b$

$$Fx = h$$

$$L(x,\lambda,\mu) = c^T x - \langle \lambda, Ax - b \rangle - \langle \mu, Fx - h \rangle$$
 where $\lambda \in K$

$$L(x, \lambda, \mu) \le c^T x \qquad \forall x \in X, \forall \lambda \in K, \forall \mu$$
$$\inf_{x \in X} L(x, \lambda, \mu) \le \inf_{x \in X} c^T x \qquad \forall \lambda \in K, \forall \mu$$

ullet For a conic program with K being self-dual, the Lagrangian is

$$\min_{x \in \mathbb{R}^n} c^T x$$
s.t. $Ax \succeq_K b$

$$Fx = h$$

$$L(x,\lambda,\mu) = c^T x - \langle \lambda, Ax - b \rangle - \langle \mu, Fx - h \rangle$$
 where $\lambda \in K$

$$L(x,\lambda,\mu) \leq c^T x \qquad \forall x \in X, \forall \lambda \in K, \forall \mu$$
$$\inf_{x \in X} L(x,\lambda,\mu) \leq \inf_{x \in X} c^T x \qquad \forall \lambda \in K, \forall \mu$$
$$\inf_{x \in \mathbb{R}^n} L(x,\lambda,\mu) \leq \inf_{x \in X} L(x,\lambda,\mu) \qquad \forall \lambda \in K, \forall \mu$$

ullet For a conic program with K being self-dual, the Lagrangian is

$$\min_{x \in \mathbb{R}^n} c^T x$$
s.t. $Ax \succeq_K b$

$$Fx = h$$

$$L(x,\lambda,\mu) = c^T x - \langle \lambda, Ax - b \rangle - \langle \mu, Fx - h \rangle$$
 where $\lambda \in K$

$$\inf_{x \in \mathbb{R}^n} L(x, \lambda, \mu) \le \inf_{x \in X} c^T x \qquad \forall \lambda \in K, \forall \mu$$

ullet For a conic program with K being self-dual, the Lagrangian is

$$\min_{x \in \mathbb{R}^n} c^T x$$
s.t. $Ax \succeq_K b$

$$Fx = h$$

$$L(x,\lambda,\mu) = c^T x - \langle \lambda, Ax - b \rangle - \langle \mu, Fx - h \rangle$$
 where $\lambda \in K$

$$\inf_{x \in \mathbb{R}^n} L(x, \lambda, \mu) \le \inf_{x \in X} c^T x \qquad \forall \lambda \in K, \forall \mu$$

$$\sup_{\lambda \in K, \mu} \inf_{x \in \mathbb{R}^n} L(x, \lambda, \mu) \le \inf_{x \in X} c^T x$$

ullet For a conic program with K being self-dual, the Lagrangian is

$$\min_{x \in \mathbb{R}^n} c^T x$$
s.t. $Ax \succeq_K b$

$$Fx = h$$

$$L(x,\lambda,\mu) = c^T x - \langle \lambda, Ax - b \rangle - \langle \mu, Fx - h \rangle$$
 where $\lambda \in K$

• Weak duality:

$$\max_{\substack{\lambda,\mu \\ \text{s.t.}}} \inf_{x \in \mathbb{R}^n} L(x,\lambda,\mu) \leq \min_{\substack{x \in \mathbb{R}^n \\ \text{s.t.}}} c^T x$$

$$\leq \text{s.t.} \quad Ax \succeq_K b$$

$$Fx = h$$

Weak duality:

$$\max_{\substack{\lambda,\mu \\ \text{s.t.}}} \inf_{x \in \mathbb{R}^n} L(x,\lambda,\mu) \leq \min_{\substack{x \in \mathbb{R}^n \\ \text{s.t.}}} c^T x$$

$$\leq \sup_{x \in \mathbb{R}^n} c^T x$$

Strong duality:

$$\max_{\substack{\lambda,\mu \\ \text{s.t.}}} \inf_{x \in \mathbb{R}^n} L(x,\lambda,\mu) = \min_{\substack{x \in \mathbb{R}^n \\ \text{s.t.}}} c^T x$$

$$= \sup_{x \in \mathbb{R}^n} c^T x$$

$$\text{s.t.} \quad Ax \succeq_K b$$

$$Fx = h$$

Strong duality:

$$\max_{\substack{\lambda,\mu \\ \text{s.t.}}} \inf_{x \in \mathbb{R}^n} L(x,\lambda,\mu) = \min_{\substack{x \in \mathbb{R}^n \\ \text{s.t.}}} c^T x$$

$$= \sup_{x \in \mathbb{R}^n} c^T x$$

$$\text{s.t.} \quad Ax \succeq_K b$$

$$Fx = h$$

ullet For a convex conic program with K being self-dual, strong duality holds under Slater's condition

$$\exists x_0 \text{ s.t. } Ax_0 - b \in \operatorname{int} K \text{ and } Fx_0 = h$$

Strong duality:

$$\max_{\substack{\lambda,\mu}} \langle \lambda, b \rangle + \langle \mu, h \rangle = \min_{\substack{x \in \mathbb{R}^n \\ \text{s.t.}}} c^T x$$

$$\text{s.t.} \quad c - A^T \lambda - F^T \mu = 0$$

$$\lambda \succeq_K 0 = \sum_{\substack{x \in \mathbb{R}^n \\ \text{s.t.}}} c^T x$$

$$\text{s.t.} \quad Ax \succeq_K b$$

$$Fx = h$$

ullet For a convex conic program with K being self-dual, strong duality holds under Slater's condition

 $\exists x_0 \text{ s.t. } Ax_0 - b \in \operatorname{int} K \text{ and } Fx_0 = h$

Strong duality:

$$\max_{\substack{\lambda,\mu}} \langle \lambda, b \rangle + \langle \mu, h \rangle = \min_{\substack{x \in \mathbb{R}^n \\ \text{s.t.}}} c^T x$$

$$\text{s.t.} \quad c - A^T \lambda - F^T \mu = 0$$

$$\lambda \succeq_K 0 = \sum_{\substack{x \in \mathbb{R}^n \\ \text{s.t.}}} c^T x$$

$$\text{s.t.} \quad Ax \succeq_K b$$

$$Fx = h$$

 Primal feasible points produce upper bounds of optimal value.

Dual feasible points produce lower bounds of optimal value.

Strong duality:

$$\max_{\substack{\lambda,\mu}} \langle \lambda, b \rangle + \langle \mu, h \rangle = \min_{\substack{x \in \mathbb{R}^n \\ \text{s.t.}}} c^T x$$

$$\text{s.t.} \quad c - A^T \lambda - F^T \mu = 0$$

$$\lambda \succ_K 0 = \sup_{x \in \mathbb{R}^n} c^T x$$

$$\text{s.t.} \quad Ax \succeq_K b$$

$$Fx = h$$

• Certificate of optimality: If \hat{x} is primal feasible and $(\hat{\lambda},\hat{\mu})$ is dual feasible, and

$$c^T \hat{x} = \langle \hat{\lambda}, b \rangle + \langle \hat{\mu}, h \rangle$$

then \hat{x} is an optimal solution.

KKT Conditions

KKT Conditions

•
$$Ax \succeq_K b$$

$$Fx = h$$

$$c - A^T \lambda - F^T \mu = 0$$

$$\lambda \succeq_K 0$$

$$\langle \lambda, Ax - b \rangle = 0$$

primal feasibility

dual feasibility

complementary slackness

KKT Conditions

$$Ax \succeq_K b$$
$$Fx = h$$

$$c - A^T \lambda - F^T \mu = 0$$
$$\lambda \succeq_K 0$$

dual feasibility

$$\langle \lambda, Ax - b \rangle = 0$$

complementary slackness

 Necessary and sufficient conditions for optimality (under Slater's condition)

Linear Program

Linear Program

•
$$K = \mathbb{R}^m_+$$

$$\min_{x \in \mathbb{R}^n} \quad c^T x \qquad \max_{\lambda,\mu} \quad b^T \lambda + h^T \mu$$
 s.t.
$$Ax \geq b \qquad \text{s.t.} \quad c - A^T \lambda - F^T \mu = 0$$

$$Fx = h \qquad \qquad \lambda \geq 0$$

Linear Program

•
$$K = \mathbb{R}^m_+$$

$$\min_{x \in \mathbb{R}^n} \quad c^T x \qquad \max_{\lambda, \mu} \quad b^T \lambda + h^T \mu$$

s.t. $Ax \ge b$ s.t. $c - A^T \lambda - F^T \mu = 0$
 $Fx = h$ $\lambda \ge 0$

Scheduling for EV charging

Semidefinite Program

Semidefinite Program

•
$$K = \mathbb{S}^m_+$$

$$\min_{x \in \mathbb{R}^n} c^T x$$
s.t. $\sum_{i=1}^n x_i A_i \succeq B$

$$Fx = h$$

$$\max_{\Lambda \in \mathbb{S}^m, \mu} \operatorname{tr}(B\Lambda) + h^T \mu$$
s.t. $\operatorname{tr}(A_i \Lambda) = (c - F^T \mu)_i \quad \forall i$

$$\Lambda \succeq 0$$

QCQP and SDP Relaxation

$$\min_{x \in \mathbb{R}^n} \quad x^T P_0 x$$
s.t.
$$x^T P_i x \le 0, \quad i = 1, \dots, m$$

$$\min_{x \in \mathbb{R}^n} \quad x^T P_0 x$$
s.t.
$$x^T P_i x \le 0, \quad i = 1, \dots, m$$

- Could be non-convex if some P_i is not PSD.
- Generally NP-hard.

$$\min_{x \in \mathbb{R}^n} \quad x^T P_0 x$$
s.t.
$$x^T P_i x \le 0, \quad i = 1, \dots, m$$

$$x^T P x = \operatorname{tr}(x^T P x) = \operatorname{tr}(P x x^T)$$

$$\min_{W \in \mathbb{S}^n, x \in \mathbb{R}^n} \operatorname{tr}(P_0 W)$$
s.t.
$$\operatorname{tr}(P_i W) \leq 0, \quad i = 1, \dots, m$$

$$W = x x^T$$

$$x^T P x = \operatorname{tr}(x^T P x) = \operatorname{tr}(P x x^T)$$

$$\min_{W \in \mathbb{S}^n} \operatorname{tr}(P_0 W)$$
s.t.
$$\operatorname{tr}(P_i W) \leq 0, \quad i = 1, \dots, m$$

$$W \succeq 0$$

$$\operatorname{rank} W \leq 1$$

QCQP: quadratically constrained quadratic program

$$\min_{W \in \mathbb{S}^n} \operatorname{tr}(P_0 W)$$
s.t.
$$\operatorname{tr}(P_i W) \leq 0, \quad i = 1, \dots, m$$

$$W \succeq 0$$

Semidefinite relaxation of QCQP

Algorithms

Algorithms

- Unconstrained optimization ($X = \mathbb{R}^n$)
 - Gradient descent & its variants
 - Newton & quasi-Newton method

Algorithms

- Unconstrained optimization ($X = \mathbb{R}^n$)
 - Gradient descent & its variants
 - Newton & quasi-Newton method
- Constrained optimization
 - Projected gradient descent & its variants
 - Dual ascent & its variants
 - Simplex method for LP
 - Interior point method
 - Distributed algorithms

Software

- Solvers
 - SDPT3, Sedumi (LP+SOCP+SDP, MATLAB), CVXOPT (Python)
 - IPOPT (nonlinear opt, local solution)
 - Gurobi (LP+SOCP+...), Mosek (LP+SOCP+SDP+...)
- Interfaces and modelling tools
 - CVX, YALMIP (MATLAB)
 - CVXPY (Python)

References

- Linear algebra:
 - G. Strang. Linear Algebra and Its Applications.
 - P. D. Lax. Linear Algebra and Its Applications.
- Real analysis:
 - W. Rudin. Principles of Mathematical Analysis.
 - N. L. Carothers. Real Analysis.
- Convex Optimization:
 - S. Boyd and L. Vandenberghe. Convex Optimization.
 - A. Ben-Tal and A. Nemirovski. *Lectures on Modern Convex Optimization*.
- Numerical Methods:
 - J. Nocedal and S. J. Wright. *Numerical Optimization*.

Backup Slides

Projection onto Closed Convex Sets

$$S \subseteq \mathbb{R}^n$$
 closed

- Projection onto a closed set $\mathcal{P}_S(x) = \underset{y \in S}{\arg\min} \|y x\|$
 - Points in S that are closest to x
- Projection onto a closed convex set
 - (Motzkin) S is convex $\iff \mathcal{P}_S(x)$ is unique for all $x \in \mathbb{R}^n$
 - If S is convex, then

$$y = \mathcal{P}_S(x) \iff \langle x - y, z - y \rangle \leq 0 \text{ for all } z \in S$$

Projection onto Closed Convex Sets

 $S \subseteq \mathbb{R}^n$ closed and convex

Projection onto a closed convex set

