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Motivation
• Many practical problems can be modeled as
optimization problems:

• Optimal Power Flow (OPF)

• EV Charging Scheduling

• Convex programs have good properties
• Certificate of global optimality

• Efficient algorithms exist

• Powerful modeling capability
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• Euclidean space

• Vectors: Matrices:

• Standard inner product:

• Standard norm:

• Orthonormal basis:



Recap of Linear Algebra

• Real symmetric matrices
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• Real symmetric matrices

• Eigenvalue decomposition for

•

• forms an orthonormal basis

•



Recap of Linear Algebra

• is a real linear space with

• Inner product:

• Frobenius norm:
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• A real symmetric matrix is PSD iff one of the
following holds:

• The eigenvalues of are all nonnegative

• for some matrix

• Corollary: A real symmetric matrix is equal to
for some iff
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Recap of Linear Algebra
• Complex linear space

• Complex transpose:

• Hermitian matrix:

• PSD matrix:

• is PSD iff
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Recap of Real Analysis
• Interior & Boundary

• Open set:
• Closed set:

• Bounded set:
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Recap of Real Analysis

• Compact set
• (Definition) Any open cover has a finite subcover

• (Heine - Borel) If , then

• Extreme Value Theorem
Suppose is compact and is continuous.
Then there exist such that
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open,

• Gradient:

• Hessian:
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Convex Set
• Line segment:

• is called convex if

convex set nonconvex set



Convex Set

• Convex hull

• The union of all line segments

• The smallest convex set containing

nonconvex set convex hull
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Examples of Convex Sets
• Hyperplanes

• Halfspaces

• Open and closed balls
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Separating Hyperplanes

convex

• Separating Hyperplane Theorem

If and , then there exists
a nonzero and such that

for any and

In other words,
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1. Closed
2. Non-empty interior
3. Pointed

4. Self-dual

Convex Cones
• Nonnegative orthant

• Second-order cone

• PSD cone

1+2+3 Possible to define a partial order:

Self-dual:
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Operations that Preserve Convexity

• Intersection

• Affine transformation
• is convex if is convex

• is convex if is convex

• Cartesian product, Minkowski sum, etc.
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More Examples of Convex Sets

• Convex polytopes

• Solutions of linear matrix inequalities
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Convex Function
• A function with a convex domain
is called convex if

is convex.
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•



Sublevel Set

•

• Sublevel sets are convex if is convex.
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First-order Condition
• A differentiable function with a convex
domain is convex iff

for all

• The tangent plane

is the hyperplane separating and



First-order Condition
• A differentiable function with a convex
domain is convex iff

for all

• … is strictly convex iff

for all with
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Second-order Condition
• A twice differentiable function with a
convex domain is convex iff

for all



Operations that Preserve Convexity

• Positive weighted sum

• Pointwise supremum of a family of convex functions

• Composition with affine functions



Examples of Convex Functions
•

•

•

•
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Convex Program

• Convex program: is convex and is convex.



Convex Program

• Convex program: is convex and is convex.

• Any local optimum is a global optimum:

Suppose and there exists such that
for all with . Then
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Conic Program

• : Linear program (LP)

• : Second-order cone program (SOCP)

• : Semidefinite program (SDP)
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Duality Theory
• Strong duality:

• Primal feasible points produce upper bounds of 
optimal value.
Dual feasible points produce lower bounds of 
optimal value.



Duality Theory
• Strong duality:

• Certificate of optimality: If      is primal feasible and 
is dual feasible, and

then      is an optimal solution.
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KKT Conditions
•

• Necessary and sufficient conditions for optimality
(under Slater’s condition)

complementary slackness

dual feasibility

primal feasibility
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•



Linear Program
•

• Scheduling for EV charging 
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QCQP and SDP Relaxation
• QCQP: quadratically constrained quadratic program

• Could be non-convex if some       is not PSD.

• Generally NP-hard.
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• QCQP: quadratically constrained quadratic program
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QCQP and SDP Relaxation
• QCQP: quadratically constrained quadratic program

• Semidefinite relaxation of QCQP
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Algorithms
• Unconstrained optimization (                )
• Gradient descent & its variants

• Newton & quasi-Newton method

• Constrained optimization

• Projected gradient descent & its variants

• Dual ascent & its variants

• Simplex method for LP

• Interior point method

• Distributed algorithms



Software
• Solvers
• SDPT3, Sedumi (LP+SOCP+SDP, MATLAB), CVXOPT (Python)

• IPOPT (nonlinear opt, local solution)

• Gurobi (LP+SOCP+…), Mosek (LP+SOCP+SDP+…)

• Interfaces and modelling tools
• CVX, YALMIP (MATLAB)

• CVXPY (Python)
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Projection onto Closed Convex Sets

closed

• Projection onto a closed set

• Points in that are closest to

• Projection onto a closed convex set

• (Motzkin)

• If is convex, then



Projection onto Closed Convex Sets

closed and convex

• Projection onto a closed convex set


