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Motivation

* Many practical problems can be modeled as
optimization problems:
rr;in f(x) reX
e Optimal Power Flow (OPF)

* EV Charging Scheduling

* Convex programs have good properties

 Certificate of global optimality
 Efficient algorithms exist

* Powerful modeling capability
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Recap of Linear Algebra

* Euclidean space R"

e Vectors: =z € R" Matrices: M € R™*™

e Transpose: MY T
 Rank: rank M
* Trace: trM = Z M;; tr(AB) = tr(BA)
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Recap of Linear Algebra

* Euclidean space R"

e Vectors: =z € R" Matrices: M € R™*™

« Standard inner product: (z,7y) =y’
* Standard norm: ||z|| = /(z,z) = VaTx

e Orthonormal basis: , ,
{ 0, ©1#

Uly...,Un WUsyUj) = . .
{ 1 } < J> 1’ i =9
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* Real symmetric matrices

S" ={M € R™"™: M = M}



Recap of Linear Algebra

* Real symmetric matrices
S" ={M € R™"™: M = M}
* Eigenvalue decomposition for M € S}
n
M = Z Aiuiur
o Mu; = \;ju; =1
e {uy,...,u,} forms an orthonormal basis

e rank(M) = #{i: \; # 0}



Recap of Linear Algebra

« S" is a real linear space with dim S™ = %n(n + 1)
* Inner product:
<A B> = tr (BTA) sz 1 AijBij

* Frobenius norm:

|Allr = V(A A) = /37, 43
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Recap of Linear Algebra

* A real symmetric matrix M is PSD iff one of the
following holds:

* The eigenvalues of M are all nonnegative

e M = AAT for some matrix A

* Corollary: A real symmetric matrix M is equal to !

forsome z € R" iff

M>0 and rankM <1



Recap of Linear Algebra

 Complex linear space C"

* Complex transpose: M zH
e Hermitian matrix: M = MY

« PSD matrix: M = M* and 2% Mz > 0Vz € C"



Recap of Linear Algebra

 Complex linear space C"

* Complex transpose: M zH
e Hermitian matrix: M = MY

« PSD matrix: M = M* and 2% Mz > 0Vz € C"

e M € C™™*™ is PSD iff

[ ReM ImM

2n -
Im M ReM]ES and is PSD
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Recap of Real Analysis

* Openball B.(z) ={y:||ly—=z|| <r}, r>0
* Interior point x € int S
There exists some open ball B,.(z) C S

* Boundary point z € 98
Forall» >0, B.(z) £ S and B.(x) NS # &
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Recap of Real Analysis

* Interior & Boundary P intS

-
T
-~ -
-
- -
- -

oS

* Openset: intS=3S
* Closedset: 9S C S

 Complement of an open (closed) set is closed (open)

. Uopen sets is open, ﬂclosed sets is closed



Recap of Real Analysis

* Interior & Boundary P intS

.
-
-~ -
-
- -
- -

oS

e Openset: intS=3S
* Closedset: 9S C S

 Bounded set: there exists some » > 0s.t. S C B,(0)
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Recap of Real Analysis

* Compact set
* (Definition) Any open cover has a finite subcover
* (Heine - Borel) If S C R"™, then
S is compact <= S is closed + bounded
* Extreme Value Theorem

Suppose X iscompactand f: X — R is continuous.
Then there exist T in, Tmax € X such that

f(@min) < f(2) < f(Tpax) forallz e X
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Recap of Real Analysis

X CR" open, f: X - R



Recap of Real Analysis

X C R" open, f'X—>]R
« Gradient: f(z 4+ h) = f(z) + (h,Vf(z)) + o(||h]|)

[8332] cR



Recap of Real Analysis

X CR" open, f: X - R
* Gradient: f(z+h)= f( ) + (h, Vf(z)) + o(|[A]])

V()= [ oz, ] e R"

* Hessian: f(z+h)=Vf(z)+ Hs(x)h+ o(||h]])

Hy(z) =

[8xzax3123 .



Recap of Real Analysis

X CR" open, f: X - R
* Gradient: f(z+h)= f( ) + (h, Vf(z)) + o(|[A]])

Vf(z)= [ oz, ] c R"

* Hessian:  Vf(z + h) = Vf(z) + Hs(x)h + o(||h|)
Hy(w) = [&iaf%l g € 5"
f(z +h) = f(z) + (b, Vf(2)) + 3h" Hy(x)h
+o([|AlI*)
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Convex Set

* Line segment: [z,y] ;== {az+ (1 — a)y : a € [0, 1]}

* S is called convex if |x,y| C S for all z,y € S

-

convex set nonconvex set




Convex Set

* Convex hull conv(S5)
* The union of all line segments [z, y| for all z,y € S

* The smallest convex set containing S

L
(\vﬂ —

/ ~
- S < -

nonconvex set convex hull
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* Hyperplanes (z,a) > b

a
{r e R" : (z,a) =b} a#0
* Halfspaces
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Examples of Convex Sets

* Hyperplanes (z,a) > b

a
{r e R" : (z,a) =b} a#0
* Halfspaces

{z e R": (z,a) < b} a#0 (z,a) < b
* Open and closed balls

Bi(x):i={y:ly—z| <r}, r>0

By(z) ={y:ly—z[<r}, r>0
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Separating Hyperplanes

S1,59 CR"™ convex
* Separating Hyperplane Theorem

If int 57 # @ and Sy Nint S7 = &, then there exists
anonzero a € R"™ and b € R such that

(x1,a) < b<(x9,0)

foranyz; € S; and z5 € S, g

(x,a) =



Separating Hyperplanes

S1,59 CR"™ convex
* Separating Hyperplane Theorem

If int 57 # @ and Sy Nint S7 = &, then there exists
anonzero a € R"™ and b € R such that

(x1,a) < b<(x9,0)

forany z; € S1 and x5 € 55
In other words, S7 C {z: (z,a) < b}

Sy C{x: (z,a) > b}

(x,a) =
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Convex Cones

« S C R" iscalled a cone if forany x € S and any

positive scalar o, ones has ax € S

* Examples of convex cones:

*
* Nonnegative orthant ,
8 r € R3

n n . +
R" :={z R :xiZO‘v’z}> ”




Convex Cones

« S C R" iscalled a cone if forany x € S and any

positive scalar o, ones has axz € S

* Examples of convex cones:

° i n
Nonnegative orthant R,

 Second-order cone

L" := {(a:,t) cR" ™ VaTy < t} ~1




Convex Cones

« S C R" iscalled a cone if forany x € S and any

positive scalar o, ones has ax € S

* Examples of convex cones:

° 1 n
Nonnegative orthant R,
* Second-order cone L"

* PSD cone
St ={M eS": M > 0}




Convex Cones

° i n
Nonnegative orthant R’
* Second-order cone L"

* PSD cone ST



Convex Cones 1 Closed

2. Non-empty interior

3. Pointed

reEKandzx #0=> - ¢ K
* PSD cone ST 4. Self-dual

° i n
Nonnegative orthant R’

 Second-order cone L"



Convex Cones 1 Closed

* Nonnegative orthant R’} 2. Non-empty interior

. tord I 3. Pointed
econd-order cone reKandz£0= -z ¢ K
* PSD cone ST 4. Self-dual

1+2+3 => Possible to define a partial order:

Wesay z>gy ifx—yekK

. x> g Vo
partial

order rrrgyandy>gx = x=y

r>rgyandy>=gz = T>Xg=z



Convex Cones 1 Closed

* Nonnegative orthant R’} 2. Non-empty interior

. tord I 3. Pointed
econd-order cone reKandz£0= -z ¢ K
* PSD cone ST 4. Self-dual

1+2+3 => Possible to define a partial order:

Wesay z>gy ifx—yekK

Self-dual: z >k 0<= (z,y) > 0Vy e K
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Operations that Preserve Convexity

* Intersection

ﬂ convex sets Is convex

e Affine transformation
* {Az +b:z € S} is convexif S is convex

* {x: Ax + b € S} is convexif S is convex



Operations that Preserve Convexity

* Intersection

ﬂ convex sets Is convex

* Affine transformation
* {Az +b:z € S} is convexif S is convex
* {z: Az + b € S} is convex if S is convex

e Cartesian product, Minkowski sum, etc.



More Examples of Convex Sets



More Examples of Convex Sets

e Convex polytopes

{r e R": Ax < b}
={z€eR":b—- Az € R} }

= ﬂ{xGR"’ alx < b}




More Examples of Convex Sets

e Convex polytopes

{r e R": Ax < b}
={z€eR":b—- Az € R} }

= ﬂ{a:E]R"’ alx < b}

 Solutions of linear matrix inequalities

{zeR":2,A1+---+2,A, + B >0}
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Convex Function

e A function f : X — R with a convex domain X
is called convex if

flax+ (1 -a)y) <af(z)+ (1 —a)f(y)

forall z,y € X and a € |[0,1]




Convex Function

e A function f : X — R with a convex domain X
is called convex if

flaz+ (1 —a)y) < af(z) + (1 —a)f(y)

forall z,y € X and a € |[0,1]

e ... is called strictly convex if

flar + (1 —a)y) <af(z)+(1—-a)f(y)

forall z,y € X with z #y and a € (0,1)



Convex Function

e A function f : X — R with a convex domain X
is called convex if

epi f :={(z,t) € X xR : f(x) <t}

IS convex.
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Sublevel Set

f:X SR



Sublevel Set

f: X—>R
* Co={z€X: f(z)<a}



Sublevel Set

f:X->R
* Co={zeX: f(z)<a}

* Sublevel sets are convex if f is convex.
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First-order Condition

A differentiable function f : X — R with a convex
domain X is convex iff A

fy) 2 f(z) +{y —z,Vf(z))

forall z,y € X

N




First-order Condition

A differentiable function f : X — R with a convex
domain X is convex iff A

fy) 2 f(z) +{y —z,Vf(z))

forall z,y € X

N

* The tangent plane

{<y, ) [Vf({"’)]T HE [Vf(fc)r [fév)]}

is the hyperplane separating epi f and {(z, f(z))}



First-order Condition

A differentiable function f : X — R with a convex
domain X is convex iff A

fy) = f(z) +{y — 2,V f(z))

forall z,y € X

N

e ... is strictly convex iff

fy) > flz) +y—2z,Vf(z))
forall x,y € X with z # y



Second-order Condition



Second-order Condition

* A twice differentiable function f : X — R with a
convex domain X is convex iff

Hy(x) = 0

forall z € X



Operations that Preserve Convexity

* Positive weighted sum
g(z) =), arfr(z) ar > 0, fr convex Vk
e Pointwise supremum of a family of convex functions
g(x) = maxy, fr(x) fr convex Vk
g(x) = sup,, f(z,y) f(+,y) convex Vy
* Composition with affine functions
g(x) = f(Axz + b) f convex



Examples of Convex Functions

. f(z)=Az+b zER"
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Convex Program

min  f(z)
s.t. zeX

* Convex program: f is convex and X is convex.



Convex Program

min  f(z)
s.t. zeX

* Convex program: f is convex and X is convex.
* Any local optimum is a global optimum:

Suppose =¥ € X and there exists ¢ > 0 such that
f(z*) < f(z) forall z € X with||x — z*|| < §. Then

flz*) < f(x) forallz e X



Conic Program

min clx

rER"
s.t. Ax >k b

Fxr=~h



Conic Program

T

min c¢ x
rEeR™ 4

s.t. Ax >k b
Fx=h \_

TrZKY
& r—yeK




Conic Program

T

min c¢ x
rER™ rTZKY
t. >~ -
S.t ACE_Kb o x—yEK
Fx=h

* K = RY : Linear program (LP)
K =], L™ : Second-order cone program (SOCP)
* K = S% : Semidefinite program (SDP)
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Duality Theory

min c¢ x
rER™

s.t. Az > b
Fx=h




. .
Duality Theory min ¢z
s.t. Ax >k b

* For a conic program with K P ,
being self-dual, the Lagrangian is v

L(x’)HU) — CT{B_ (AvAx_b> o <M7F$_h’>
where \ € K



T

Duality Theory min ¢ 2

rERM
s.t. Az > b

* For a conic program with K
Fx=h

being self-dual, the Lagrangian is
-L(xaA7“)::(ﬂzv__(Awfkv—_b>__<uvﬁhg_'h>
where A € K

* Because K is self-dual, we have
Lz, \p) <clzx Vee X,VA e K,Vu



T

Duality Theory min ¢z

rER™
s.t. Az > b

* For a conic program with K
Fx=h

being self-dual, the Lagrangian is
L(z,\p) =ctz — (\, Az —b) — (u, Fx — h)
where A € K
* Because K is self-dual, we have
L(z,\p)<c'z Vze X,VAeK,Vu

: < inf T
;g{ Lz, A\, pn) < mlg(c x VA e K,Vu



. .
Duality Theory min ¢z
s.t. Az > b

* For a conic program with K P ,
being self-dual, the Lagrangian is v

L(xa)‘alu') — CTZE_ (AvAx_b> o <:U’7F$_h>
where A\ € K

* Because K is self-dual, we have
Lz, \p) <clzx Ve e X,VA e K,Vu

: < inf T
mlg( Lz, A\, pn) < m1g(c x VA e K,Vu

. -
dnf L(z,A,p) < inf L(z, A, p) VA€ K, Vu



T

Duality Theory min ¢z

rER™
s.t. Az > b

* For a conic program with K
Fx=h

being self-dual, the Lagrangian is
-L(xaA7“)::(ﬂzv__(Awfkv—_b>__<ﬂvﬁhg_'h>
where A € K

* Because K is self-dual, we have

. < inf T
xlélan Lz, A\ p) < mlg)f{c x Ve K,Vu



T

Duality Theory min ¢ 2

rER™
s.t. Az > b

* For a conic program with K
Fx=h

being self-dual, the Lagrangian is
.L(x,A,u)::CFEB——(A,fkv——b)——(u,ﬁhc—-h>
where A € K

* Because K is self-dual, we have

. < inf T
a:leann Lz, A\ p) < ;g)f{c x Ve K,Vu

sup inf L(z,\ p) < inf ¢’z
AEK ,pu TER™ reX



T

Duality Theory min ¢ 2

rER™
s.t. Az > b

* For a conic program with K
Fx=h

being self-dual, the Lagrangian is
.L(x,A,u)::cﬂzc——(A,fkv——b)——<u,Phc—-h>
where A € K

* Weak duality:

min clz

max inf L(x, A\, ) zER™
A, L xER™
s.t. Ax >k b

Fxr=~h

IA

st. A>g 0



Duality Theory

* Weak duality:

- T

max inf L(xz,\, p) e 7

)7 rER" " A > b
— S.T. X

st. A>g 0 —K

Fxr=~h



Duality Theory

 Strong duality:

: T

max inf L(xz,\, p) e 7

M e = st. Az b
s.t. Ax

st. A>g 0 —K

Fxr=~h



Duality Theory

 Strong duality:

min ¢l

max inf L(z. )\ R
nax  inf (z, A\, 1) -

o t. Ax >
st. A>g 0 .4 T Zk b
Fx=h

* For a convex conic program with K being self-dual,
strong duality holds under Slater’s condition

Jxg s.t. Axg —b e int K and Fxg = h



Duality Theory

 Strong duality:

T

max (A, b) + (i, h) min ¢z
st. c— ATA_FTy—0 = st Azrgb
A>x 0 Fx=h

* For a convex conic program with K being self-dual,
strong duality holds under Slater’s condition

Jxg s.t. Axg —b e int K and Fxg = h



Duality Theory

 Strong duality:

: T

max (A, b) + (i, h) min ¢z
st c— ATA_FTy—0 — st Az=gb
A>x 0 Fx=h

* Primal feasible points produce upper bounds of
optimal value.
Dual feasible points produce lower bounds of
optimal value.



Duality Theory

 Strong duality:

: T
max (A, 0) + (u, h) min ¢z
st. c— ATA_FTy—0 = st Azrgb

A>x 0 Fx=h

* Certificate of optimality: If £ is primal feasible and (5\, i)
is dual feasible, and

Iz = (\b) + (i1, h)

then Z is an optimal solution.



KKT Conditions



KKT Conditions

* Ax>x b

primal feasibility
Fx=nh

c—ATAN—FTu=0
A >k 0

dual feasibility

(A, Az — b) =0 complementary slackness



KKT Conditions

* Ax>x b

primal feasibility
Fx=nh

c— ATAN—FTu=0
A=k 0

dual feasibility

(A, Az — b) =0 complementary slackness

* Necessary and sufficient conditions for optimality
(under Slater’s condition)



Linear Program



Linear Program

* K =R
min ¢’z max bIA+ AT p
rERM >‘7/1'
s.t. Ax>b st. c—ATN—Fl'u=0

Fx=h A>0



Linear Program

* K =R
min ¢’z max bIA+ AT p
xeR" AL
s.t. Ax >0 st. c—ATN—Fl'u=0

Fx=h A>0

e Scheduling for EV charging



Semidefinite Program



Semidefinite Program

+ K =ST

min clzx

zeR”
S.t. E?:l szz t B
Fx=h

BA) + At
Jmax - tr(BA)+ h7p

s.t.  tr(4;A) = (c— Fhp); Vi
A>0



QCQP and SDP Relaxation



QCQP and SDP Relaxation

* QCQP: quadratically constrained quadratic program

min z! Pyz
rER™

st. z'Px<0, i=1,....m



QCQP and SDP Relaxation

* QCQP: quadratically constrained quadratic program

min z! Pyz
rER™

st. z'Px<0, i=1,....m

* Could be non-convex if some F; is not PSD.

* Generally NP-hard.



QCQP and SDP Relaxation

* QCQP: quadratically constrained quadratic program
min z! Pyz
rER"
st. z'Px<0, i=1,....m

z! Pz = tr(2! Pz) = tr(Pzz?)



QCQP and SDP Relaxation

* QCQP: quadratically constrained quadratic program

] tr( P
wemin - tr(FW)

S.t. tI‘(Pz'W) < 0, 1= 1, N

W =zt

z! Pz = tr(2! Pz) = tr(Pzz?)



QCQP and SDP Relaxation

* QCQP: quadratically constrained quadratic program

min tr(PoW)

s.t. tr(PW)<0, i=1,...,m
W >0
rank W <1



QCQP and SDP Relaxation

* QCQP: quadratically constrained quadratic program

min tr(PoW)

s.t. tr(PW)<0, i=1,...,m
W =0

 Semidefinite relaxation of QCQP
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Algorithms

* Unconstrained optimization (X = R")
 Gradient descent & its variants

* Newton & quasi-Newton method



Algorithms

* Unconstrained optimization (X = R")
 Gradient descent & its variants

* Newton & quasi-Newton method

* Constrained optimization
* Projected gradient descent & its variants
* Dual ascent & its variants

e Simplex method for LP

Interior point method

Distributed algorithms



Software

* Solvers
 SDPT3, Sedumi (LP+SOCP+SDP, MATLAB), CVXOPT (Python)
* IPOPT (nonlinear opt, local solution)

e Gurobi (LP+SOCP+...), Mosek (LP+SOCP+SDP+...)

* Interfaces and modelling tools
* CVX, YALMIP (MATLAB)
* CVXPY (Python)
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Projection onto Closed Convex Sets

S C R"™ closed
* Projection onto a closed set Ps(x) = arg rginHy — x|
* Pointsin S that are closest to x .
* Projection onto a closed convex set
* (Motzkin) S is convex <= Pg(x) is unique for all x € R"

e If S isconvex, then

y="Ps(z) <= (r —y,z—y) < 0forall z€ S



Projection onto Closed Convex Sets

S C R"™ closed and convex

* Projection onto a closed convex set

Ps(x) = arg min||y — z||
yeS

y=735(a:)
iff (x —y,z—y)<0 Vze§




