
1 Transmission Link

Figure 1 shows a unified model for transmission lines and transformers, which we
call a transmission link. A (directed) transmission link has a from end and a to end,
and the currents and voltages at the two ends are related by[

If
It

]
=

[
n2(ys + ymft) −ne−jθ

sh
ys

−nejθshys ys + ymtf

] [
Vf
Vt

]
.

It can be seen that the behavior of this transmission link is determined by the five
parameters

(
n, θsh, ys, ymft, y

m
tf

)
.

Figure 1: Circuit model for a transmission link.

For a normal power system, we have n = 1 and θsh = 0 for each transmission
link.

2 Admittance Matrix

Suppose we have a power system with N buses which are indexed by 1, 2, . . . , N . For
each transmission link connecting two buses, we pick one of the buses to be the from
end and the other to be the to end. We assume that for each pair of buses there is at
most one transmission link connecting the two buses. The set of transmission links
is defined by

E := {(i, k)| there is a transmission link with bus i being the from bus

and bus k being the to bus}.
(1)
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Note that if there is a transmission link connecting bus i and bus k, then either
(i, k) ∈ E or (k, i) ∈ E (but not both), and which one is true depends on which of
the two buses is assigned as the from bus of this transmission link. Throughout we
always assume that the directed graph G = ({1, . . . , N}, E) is weakly connected.

Each transmission link (i, k) ∈ E is associated with five parameters which we
denote by (

nik, θ
sh
ik , y

s
ik, y

m
ik , y

m
ki

)
as discussed in the previous section. Apart from the shunt admittance introduced
by transmission links, we assume that for each bus i there can also be a linear load
of admittance yi connected to bus i; see Figure 2.

Figure 2: Diagram of bus i.

The admittance matrix Y ∈ CN×N is formed by the following steps:

Initialize: Y ← diag(y1, y2, . . . , yN), S ← E
while S 6= ∅ do

Pick any (i, k) ∈ S, and remove (i, k) from S

Yii ← Yii + n2
ik (ysik + ymik)

Ykk ← Ykk + ysik + ymki

Yik ← −nike−jθ
sh
ikysik

Yki ← −nikejθ
sh
ikysik

end while
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Equivalently, we have

Yii = yi +
∑

k:(i,k)∈E

n2
ik (ysik + ymik) +

∑
k:(k,i)∈E

(yski + ymik) ,

Yik =


− nike−jθ

sh
ikysik, if (i, k) ∈ E ,

− nkiejθ
sh
kiyski, if (k, i) ∈ E ,

0, otherwise.

Let I ∈ CN be the vector whose k’th entry is the total complex current injection
at bus k, and let V ∈ CN be the vector whose k’th entry is the complex voltage at
bus k. Then we have

I = Y V.

2.1 Kron Reduction

In a power system, the current injections are zero at buses where there are no loads
or generators connected. Without loss of generality let’s assume that the current
injections at the last N −M buses are zero. Then I = Y V can be written as[

I1

0

]
=

[
Y11 Y12

Y21 Y22

] [
V1

V2

]
,

where

1. I1 ∈ CM is the vector of current injections at the first M buses,

2. V1 ∈ CM is the vector of voltages at the first M buses, V2 ∈ CN−M is the vector
of voltages at the last N −M buses,

3. Y11 ∈ CM×M , Y12 ∈ CM×(N−M), Y21 ∈ C(N−M)×M , Y22 ∈ C(N−M)×(N−M) are the
blocks of the admittance matrix Y .

If Y22 is invertible, then 0 = Y21V1 + Y22V2 implies V2 = −Y −1
22 Y21V1, and so

I1 = Y11V1 + Y12V2 =
(
Y11 − Y12Y

−1
22 Y21

)
V1.

In this way we get a lower dimensional system in which the zero current injection
buses are eliminated; the admittance matrix for this new system is Y11− Y12Y

−1
22 Y21.
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2.2 Solving for V When I is Known

Let’s consider the situation where we know the current injections at each bus and
want to find the complex voltages. Suppose Y is invertible, and then we can solve
the linear equation

Y V = I

to get V .
For large networks, solving the linear equation Y V = I can be time consuming. In

many practical studies we need to solve Y V = I repeatedly with the same admittance
matrix Y for the voltages corresponding to different sets of current injections. One
way to reduce computation time in this situation is to employ LU factorization. First
we apply LU factorization to Y to get

Y = LU

where L is lower-triangular with diagonal entries being 1 and U is upper-triangular.
The LU factorization has time-complexity O(N3). Then we solve the following two
equations:

LṼ = I, UV = Ṽ .

The first equation can be solved by forward substitution because L is lower-triangular,
and the second equation can be solved by backward substitution because U is upper-
triangular. The time complexity of solving these two equations is O(N2).

The details of LU factorization can be found in Steven’s lecture notes, or text-
books on numerical algorithms (e.g. see Section 28.1 of Introduction to Algorithms,
3rd ed. by T. H. Cormen, et al.). In MATLAB, LU factorization can be computed
by the lu function.
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3 Power Flow Analysis

3.1 Power Flow Equations

Suppose we have a power system of N buses indexed by 1, 2, . . . , N , and the admit-
tance matrix is Y .

Let V ∈ CN be the vector of complex voltages, I ∈ CN be the vector of current
injections, and s = p+ jq ∈ CN be the vector of complex power injections. Then

si = ViI
∗
i = Vi

(
N∑
k=1

YikVk

)∗
= Vi

N∑
k=1

Y ∗ikV
∗
k , i = 1, . . . , N.

These equations are called the power flow equations.

Polar form Let θi denote the phase angle of the complex voltage Vi. Then

si =
N∑
k=1

|Vi||Vk|ej(θi−θk)Y ∗ik =
N∑
k=1

|Vi||Vk| (cos(θi − θk) + j sin(θi − θk)) (Gik − jBik)

=
N∑
k=1

|Vi||Vk| (Gik cos(θi − θk) +Bik sin(θi − θk))

+ j
N∑
k=1

|Vi||Vk| (Gik sin(θi − θk)−Bik cos(θi − θk)) ,

and so

pi =
N∑
k=1

|Vi||Vk| (Gik cos(θi − θk) +Bik sin(θi − θk))

= Gii|Vi|2 +
∑
k 6=i

|Vi||Vk| (Gik cos(θi − θk) +Bik sin(θi − θk)) ,
(2a)

qi =
N∑
k=1

|Vi||Vk| (Gik sin(θi − θk)−Bik cos(θi − θk))

= −Bii|Vi|2 +
∑
k 6=i

|Vi||Vk| (Gik sin(θi − θk)−Bik cos(θi − θk)) ,
(2b)

where Gik = Re{Yik}, Bik = Im{Yik}, pi is the real power injection and qi is the
reactive power injection at bus i.
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Cartesian form We can also perform the computation in the Cartesian form Vi =
Vi,R + jVi,I. Then it can be shown that

pi =
N∑
k=1

(Gik (Vi,RVk,R + Vi,IVk,I) +Bik (Vi,IVk,R − Vi,RVk,I))

= Gii

(
V 2
i,R + V 2

i,I

)
+
∑
k 6=i

(Gik (Vi,RVk,R + Vi,IVk,I) +Bik (Vi,IVk,R − Vi,RVk,I)) ,

qi =
N∑
k=1

(Gik (Vi,IVk,R − Vi,RVk,I)−Bik (Vi,RVk,R + Vi,IVk,I))

= −Bii

(
V 2
i,R + V 2

i,I

)
+
∑
k 6=i

(Gik (Vi,IVk,R − Vi,RVk,I)−Bik (Vi,RVk,R + Vi,IVk,I)) .

They can also be written in the compact form

pi =
1

2

[
VR

VI

]T [
Gi +GT

i −Bi +BT
i

Bi −BT
i Gi +GT

i

] [
VR

VI

]
,

qi =
1

2

[
VR

VI

]T [−Bi −BT
i −Gi +GT

i

Gi −GT
i −Bi −BT

i

] [
VR

VI

]
where VR = Re{V }, VI = Im{V }, Gi = Re{Yi}, Bi = Im{Yi}, and Yi is an N × N
complex matrix whose i’th row is equal to the i’th row of Y and whose other entries
are zero.

3.2 The Power Flow Problem

Roughly speaking, by solving “the power flow problem”, we mean finding the complex
voltages for all the buses of the power system when the complex power injections
are given such that the power injections and the voltages satisfy the power flow
equations. However, there are several considerations:

1. In general we cannot specify all the complex power injections independently,
as can be seen from the following two examples:

(a) Consider the case where all the transmission lines are lossless (i.e. ys and
ym are purely imaginary). Then by the conservation of power,

N∑
i=1

pi = 0,

which puts a constraint on the power injection vector.
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(b) Consider the case where the power system consists of two buses connected
by a short transmission line with series admittance y = g + jb. Then the
admittance matrix is

Y =

[
g + jb −g − jb
−g − jb g + jb

]
,

and the power flow equations are

p1 = g|V1|2 + |V1||V2|(−g cos θ2 + b sin θ2),

p2 = g|V2|2 + |V1||V2|(−g cos θ2 − b sin θ2),

q1 = −b|V1|2 + |V1||V2|(g sin θ2 + b cos θ2),

q2 = −b|V2|2 + |V1||V2|(−g sin θ2 + b cos θ2),

and so

p1 + p2 = g(|V1|2 + |V2|2 − 2|V1||V2| cos θ2) = g|V1 − V2|2,
q1 + q2 = −b(|V1|2 + |V2|2 − 2b|V1||V2| cos θ2) = −b|V1 − V2|2,

(these two equalities can also be obtained by the conservation of complex
power), which imply that

b(p1 + p2) + g(q1 + q2) = 0.

These two examples suggest that there is a constraint imposed on the power
injections by the need to balance complex power in steady-state operation.

2. The solution in general is not unique: If the complex voltages V ∈ CN and the
complex power injections s ∈ CN satisfy the power flow equations, then ejθ0V
and s will also satisfy the power flow equations for any θ0 ∈ R. This means
that we need to fix the voltage phase angle at a certain bus.

3. For transmission networks, it is reasonable to model loads as constant power
loads, meaning that the complex power consumed by the loads are not affected
by the voltages imposed on the loads. This is partly related to the fact that in
transmission networks, loads are usually connected to the network via substa-
tions, in which there are voltage regulators (transformers with variable voltage
gains) to keep the voltages on the secondary side roughly constant regardless
of the voltages on the primary side.

On the other hand, for buses with bulk generators connected it is more reason-
able to specify their real power injections and voltage magnitudes (this is due
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to how the bulk generators are operated, which we will not talk about in detail
in this course); the reactive power injections will then be determined after the
complex voltages are solved.

These considerations lead to the following formulation of the power flow problem
that is employed by power system researchers and engineers:

• There are three types of buses:

1. A slack bus or swing bus, at which the voltage phase angle is zero and the
voltage magnitude is given. In other words, V1 = |V1| is specified.

The slack bus is placed at a generator bus and is usually bus 1.

2. PV buses or voltage-controlled buses, at which the real power injections
and the voltage magnitudes are specified. These buses are usually buses
with bulk generators connected.

Suppose bus i is a PV bus connected to generators injecting real power
pGi and loads consuming real power PDi, then the net real power injection
at bus i is given by pi = pGi − pDi.
Without loss of generality we assume that the PV buses are bus 2 to bus
M .

3. PQ buses or load buses, at which the real and reactive power injections
are specified. These buses are usually the load buses.

Suppose bus i is a PQ bus connected to loads consuming real power pDi
and reactive power qDi, then the net real and reactive complex power
injections at bus i are given by pi = −pDi, qi = −qDi.

• The power flow problem is to find the following 2N −M − 1 real quantities

θ2, . . . , θM , |VM+1|, θM+1, |VM+2|, θM+2, . . . , |VN |, θN (3)

from the following 2N −M − 1 power flow equations

pi =
N∑
k=1

|Vi||Vk| (Gik cos(θi − θk) +Bik sin(θi − θk)) , i = 2, . . . , N, (4a)

qi =
N∑
k=1

|Vi||Vk| (Gik sin(θi − θk)−Bik cos(θi − θk)) , i = M + 1, . . . , N. (4b)

given the following specified quantities

|V1|, θ1 = 0, p2, |V2|, . . . , pM , |VM |, pM+1, qM+1, . . . pN , qN . (5)
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• After the 2N −M − 1 unknown quantities in (3) are found, the complex power
injection at the slack bus and the reactive power injections at the PV buses
are calculated by

p1 =
N∑
k=1

|V1||Vk| (G1k cos θk −B1k sin θk) ,

qi =
N∑
k=1

|Vi||Vk| (Gik sin(θi − θk)−Bik cos(θi − θk)) , i = 1, . . . ,M.

The real and reactive power generated by generators connected to the slack
bus are pG1 = p1 + pD1 and qG1 = q1 + qD1, where pD1 and qD1 are the real and
reactive power consumption of the load connected to the slack bus. For PV bus
i, The reactive power generated by generators connected to it is qGi = qi + qDi,
where qDi is the reactive power consumption of the load connected to bus i.

• Moreover, after all the voltages are found, we can then calculate the complex
powers and currents that flow through the transmission links, to check if oper-
ational constraints (e.g. thermal limits) are satisfied.

Remark. 1. The slack bus plays two roles: (1) to serve as a reference of the voltage
phase angles, (2) to achieve power balance of the whole system by not specifying
its power injections. Then, since the complex power injection of the slack bus
is not predetermined, we will need generators connected to the slack bus so
that its complex power injection is adjustable.

2. For a PV bus i, usually the reactive power produced by the generators qGi must
be constrained within a certain range such as qmin

Gi ≤ qGi ≤ qmax
Gi . After solving

the power flow problem and evaluating the resulting reactive power generation
qGi, if it exceeds one of the limits then qGi will be set to that limit and bus
i will be re-classified as a PQ bus with |Vi| to be determined. The updated
power flow equations are then re-solved for the unknown quantities.

The core of solving the power flow problem is solving the 2N −M − 1 nonlinear
power flow equations. These nonlinear equations may have no, unique, or multiple
solutions. The following subsections introduce numerical methods for solving the
nonlinear power flow equations.

3.3 The Newton-Raphson Method

We first give a concise description of the general Newton-Raphson algorithm.
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Suppose f : Rn → Rn is a vector-valued function whose entries are all continu-
ously differentiable. We want to find the solution to the following equation

f(x) = 0.

The basic idea of the Newton-Raphson method is as follows: Suppose xk ∈ Rn is some
point sufficiently close to the true solution. We approximate f(x) by its first-order
Taylor expansion at xt

f(xk) + Jf (x
k)(x− xk),

where Jf (x
k) is the Jacobian of f evaluated at xk:

Jf (x
k) =



∂f1
∂x1

(xk)
∂f1
∂x2

(xk) · · · ∂f1
∂xn

(xk)

∂f2
∂x1

(xk)
∂f2
∂x2

(xk) · · · ∂f2
∂xn

(xk)

...
...

. . .
...

∂fn
∂x1

(xk)
∂fn
∂x2

(xk) · · · ∂fn
∂xn

(xk)


∈ Rn×n.

We then solve the linear approximation of f(x) = 0, i.e., the equation that the
first-order Taylor expansion of f at xk is equal to zero. Its solution will be denoted
by xk+1 and satisfies

Jf (x
k)(xk+1 − xk) = −f(xk), (6)

We then use xk+1 as the next iterate and repeat the above process until the iterates
converge to a point x∗. We now get a solution x∗ that satisfies f(x∗) = 0.

The Newton-Raphson method is widely used in numerically solving nonlinear
equations. It may produce a diverging sequence of iterates if the initial iterate x0 is
not sufficiently close to a solution, or if Jf (x) is not well-behaved around a solution.
There is also no guarantee that all the solutions can be found. However, under
certain conditions, it can be shown that the Newton-Raphson method converges at a
quadratic rate. In practice, it is often observed that only a few iterations are needed
by the Newton-Raphson method to produce a very accurate solution. See textbooks
on numerical algorithms for more details.

Now we apply the Newton-Raphson method on solving the power flow problem.
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We use the polar form of the power flow equations. Denote

θ =

 θ2
...
θN

 , |V | =

|VM+1|
...
|VN |


︸ ︷︷ ︸

unknown variables to be found

, p =

p2
...
pN

 , q =

qM+1
...
qN


︸ ︷︷ ︸

specified quantities

,

and define the following functions

pi(θ, |V |) = Gii|Vi|2 +
∑
k 6=i

|Vi||Vk| (Gik cos(θi − θk) +Bik sin(θi − θk)) ,

qi(θ, |V |) = −Bii|Vi|2 +
∑
k 6=i

|Vi||Vk| (Gik sin(θi − θk)−Bik cos(θi − θk)) ,
(7)

p(θ, |V |) =

p2(θ, |V |)
...

pN(θ, |V |)

 , q(θ, |V |) =

qM+1(θ, |V |)
...

qN(θ, |V |)

 .
The 2N −M − 1 power flow equations can then be written as[

p(θ, |V |)− p
q(θ, |V |)− q

]
= 0.

The Newton-Raphson iterations for solving the power flow problem are then given
by the following equations Jp,θ(θ

k, |V |k) Jp,|V |(θ
k, |V |k)

Jq,θ(θ
k, |V |k) Jq,|V |(θ

k, |V |k)

[ ∆θk

∆|V |k

]
=

[
p− p(θk, |V |k)
q − q(θk, |V |k)

]
, (8a)

[
θk+1

|V |k+1

]
=

[
θk

|V |k

]
+

[
∆θk

∆|V |k

]
, (8b)

where

Jp,θ(θ, |V |) :=


∂p2
∂θ2

(θ, |V |) · · · ∂p2
∂θN

(θ, |V |)
...

. . .
...

∂pN
∂θ2

(θ, |V |) · · · ∂pN
∂θN

(θ, |V |)

 , (9a)
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Jq,θ(θ, |V |) :=


∂qM+1

∂θ2
(θ, |V |) · · · ∂qM+1

∂θN
(θ, |V |)

...
. . .

...
∂qN
∂θ2

(θ, |V |) · · · ∂qN
∂θN

(θ, |V |)

 , (9b)

Jp,|V |(θ, |V |) :=


∂p2

∂|VM+1|
(θ, |V |) · · · ∂p2

∂|VN |
(θ, |V |)

...
. . .

...
∂pN

∂|VM+1|
(θ, |V |) · · · ∂pN

∂|VN |
(θ, |V |)

 , (9c)

Jq,|V |(θ, |V |) :=


∂qM+1

∂|VM+1|
(θ, |V |) · · · ∂qM+1

∂|VN |
(θ, |V |)

...
. . .

...
∂qN

∂|VM+1|
(θ, |V |) · · · ∂qN

∂|VN |
(θ, |V |)

 , (9d)

and

∂pi
∂θk

(θ, |V |) =

{
|Vi||Vk|(Gik sin(θi − θk)−Bik cos(θi − θk)), i 6= k,

− qi(θ, |V |)−Bii|Vi|2, i = k,
(10a)

∂pi
∂|Vk|

(θ, |V |) =


|Vi|(Gik cos(θi − θk) +Bik sin(θi − θk)), i 6= k,

pi(θ, |V |)
|Vi|

+Gii|Vi|, i = k,
(10b)

∂qi
∂θk

(θ, |V |) =

{
− |Vi||Vk|(Gik cos(θi − θk) +Bik sin(θi − θk)), i 6= k,

pi(θ, |V |)−Gii|Vi|2, i = k,
(10c)

∂qi
∂|Vk|

(θ, |V |) =


|Vi|(Gik sin(θi − θk)−Bik cos(θi − θk)), i 6= k,

qi(θ, |V |)
|Vi|

−Bii|Vi|, i = k,
(10d)

The textbook also introduces a modified version of the Newton-Raphson itera-
tions that utilize the relationships between the elements of the Jacobian submatrices
to reduce data storage burden.

3.4 Decoupled Power Flow Method

In a well-designed and properly operated transmission network, we usually have the
following facts:
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1. The transmission links are mostly reactive, meaning that

Gik � Bik

for any bus i and bus k that are connected by a transmission link.

2. The phase angle difference θi − θk is very small for any bus i and bus k that
are connected by a transmission link. Therefore

sin(θi − θk)� cos(θi − θk).

By comparing these observations with (10) and (7), we can see that, for (θ, |V |) that
is equal or sufficiently close to a real operating point of the power system, the entries
of Jp,|V |(θ, |V |) and Jq,θ(θ, |V |) are very small compared to the entries of Jp,θ(θ, |V |)
and Jq,|V |(θ, |V |), which suggests that the Jacobian can be approximated by[

Jp,θ(θ, |V |) 0

0 Jq,|V |(θ, |V |)

]
.

This means that the voltage magnitudes and the real power injections are approx-
imately decoupled, and the voltage angles and the reactive power injections are
approximately decoupled. By applying this approximation in the Newton-Raphson
iterations, we get the decoupled power flow method given by

Jp,θ(θ
k, |V |k)∆θk = p− p(θk, |V |k)

Jq,|V |(θ
k, |V |k)∆|V |k = q − q(θk, |V |k)

(11a)

[
θk+1

|V |k+1

]
=

[
θk

|V |k
]

+

[
∆θk

∆|V |k
]
, (11b)

The decoupled power flow method can be further simplified with more approxi-
mations; see the course’s textbook. These approximations and simplifications help
to reduce the computation time of solving power flow equations.

3.5 DC Power Flow

The DC power flow model is a linear power flow model that makes the following
assumptions

1. Gii ≈ 0 and Gik ≈ 0 for all transmission links. In other words, the power
system is lossless.
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2. The phase angle difference θi− θk is small so that sin(θi− θk) ≈ θi− θk for any
bus i and bus k connected by a transmission link.

3. |Vi| ≈ 1 for all i, i.e., the voltage magnitudes are near their nominal values at
all buses.

4. Reactive power injections can be ignored.

The last two assumptions follow from the decoupling of p and |V | and the decoupling
of q and θ, which suggest that reactive power injections can be chosen to stabilize
the voltage magnitudes separately from θ and p. By applying these approximations
to the original power flow equations, we get

pi =
N∑
k=1

Bik(θi − θk). (12)

Now let’s consider the case of a normal power system. Let E be the set of (directed)
transmission links [see Eq. (1)], and E be the number of elements in E . We assign
an arbitrary order to the set of transmission links so that we can talk about the k’th
transmission link for k = 1, . . . , E. Let the incidence matrix M ∈ RN×E be defined
by

Mik =


1, bus i is the from bus of the k’th transmission link,

− 1, bus i is the to bus of the k’th transmission link,

0, otherwise.

Let X ∈ RE×E be the diagonal matrix whose k’th diagonal is equal to the series
reactance of the k’th transmission line. Let p ∈ RN and θ ∈ RN denote the vector
of real power injections and voltage phase angles of all the N buses. Then it can be
shown that (12) can be written as

p = MX−1MT θ.

Furthermore, it can be verified that the k’th entry of the vector

P = X−1MT θ

is equal to the real power flow through the k’th transmission link.
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