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1 Review of Gradient Descent
Consider the following unconstrained optimization problem

min f(z) (1)

where f : R? — R is continuously differentiable. The gradient descent iteration for minimizing f(x)
over x € RP is given by
Tpt1 = xp — oV f(xg), (GD)

where a > 0 is the step size. The following theorem establishes the convergence of gradient descent
for smooth and convex objective functions.

Theorem 1. Suppose f : RP — R is conver and L-smooth, and has a minimizer z* € RP.

1. By choosing o = 1/L, the gradient descent iteration (GD) achieves

o o Lllzo — |
_ < ZNFY 7
2. If f is also m-strongly convex, then by choosing o = 2/(L + m), the gradient descent itera-
tion (GD) achieves

L—m\" L(L-—m\*
_ ¥l < ok o ) <« 2 ok 2.
o=l < (1) o=l S =) <5 (o) =]

Corollary 1. Suppose f : RP — R is convex and L-smooth, and has a minimizer x* € RP. Let
€ > 0 be arbitrary.

1. The number of gradient descent iterations needed to achieve f(xy) — f(x*) < € can be bounded

by
k;zO(l).
€

2. 1If f is also m-strongly convez, then the number of gradient descent iterations needed to achieve
flzk) — f(z*) < e can be bounded by
1
k=0 <ln ) .
€



2 Zeroth-Order Gradient Estimation

Now suppose we don’t have access to the gradients of the function f. Instead, there is a zeroth-
order oracle that can accept an arbitrary x € RP and output the corresponding value f(x), and we
can only employ this zeroth-order oracle finitely many times for optimizing f. In this lecture, we
introduce a class of methods based on gradient estimation using zeroth-order information.

We start with the following single-point zeroth-order gradient estimator:

Gf(x;r,z)zgf(x—krz)z, z~ Z. (2)

Here r > 0 is a positive parameter called the smoothing radius; z is a p-dimensional random vector
following the probability distribution Z, and we will just call it the random perturbation. Usually,
the Z is chosen to be one of the following:

1. The Gaussian distribution N'(0,p~1I).

2. The uniform distribution on the unit sphere S,_; := {x € R? : ||z|| = 1}, which we denote by
Unif(Sp,l).

The following lemma characterizes the expectation of the single-point gradient estimator (2).
Lemma 1. Suppose f: RP — R is L-smooth.

1. Let Z be N(0,p~tI). Then
E.~z[Gy(z;7, 2)] = V fr(2),

where f. : RP — R is given by
fr(@) = Eyuy[f(z +ry)],
and Y is the Gaussian distribution N'(0,p~11).

2. let Z be Unif(S,—1). Then
EZ"‘Z[GJC(J:; T Z)} - Vf,(x),

where f, : RP — R is given by
fr(@) = Eyy[f(z +ry)],
and Y is the uniform distribution on the unit ball B, == {x € RP : ||z|| < 1}.

Lemma 1 shows that the expectation of Gy (z;r, 2) gives the gradient of a smooth version of f.
The following lemma provides further properties of f, and V f,.

Lemma 2. Suppose f is convex and L-smooth. Let Z be either N'(0,p~1I) or Unif(S,_1), and let
fr denote the corresponding smooth version of f. Then f,. is convex, L-smooth, and satisfies

and
IV fr(z) =V f(z)| < Lr.



Proof. The convexity of f, follows by noting that

fr(@z1 + (1 = 0)xa) = Eyuy[f (021 + (1 — 0)z2 + 1Y)
=Eyy[f(0(z1 +ry) + (1 = 0)(z2 +1y))]
<Eyy[0f(z1 +ry) + (1 =0)f(22+ry)] = 0f-(z1) + (1 = 0) fr(22)

for any 0 € [0,1] and any z1, z3.
To show the L-smoothness of f,, let x1,x2 € RP be arbitrary, and we have

IV fr(z1) = V(o) = [VEy~y[f (21 +1ry)] = VE oy [f(z2 + ry)]|
= |Eyy[Vf(z1 +71y) = V(22 +ry)]|l
<Ey[IVf(z1 +ry) = Vi(ze +ry)|]
< Eyoy[Lllz1 — 22[]] = Llj21 — 22,

where in the second step we interchanged differentiation with expectation (which can be justified
by the dominance convergence theorem), and in the fourth step we used the L-smoothness of f.
Now, by the convexity and smoothness of f, we have

F(a) + (Y F(@),r0) < Flatry) < f@) + (V@) ry) + 2ol

Now we take the expectation with respect to y ~ Y. We have E,y[(Vf(z),ry)] = 0 since Y is
isotropic, and therefore

Lr?

f(@) S Byl f(e +ry)) < (@) + = Eyen [l917]

which gives the first inequality.
Now regarding V f,., we have

IVfr(z) = V@) = Ve Eyny[f(x +ry) = f(@)]]
[Ey~y[Vaf(z +ry) = Vaf ()]l
S Eyy[IVF (@ +ry) = V()]

< Ey~y([Llryl]] < Lr,

where in the second step we interchanged differentiation with expectation (which can be justified by
the dominance convergence theorem), and in the fourth step we employ the L-smoothness of f. O

Lemma 2 bounds the differences f, — f and Vf. — Vf, and we can see that they both go to
zero when r — 0. Consequently, we can view Gy(x;r,2) as a stochastic gradient of f with a bias
that can be controlled by the smoothing radius 7.

3 Two-Point Gradient Estimators

The single-point gradient estimator (2) provides a stochastic gradient with a nonzero but control-
lable bias. However, its variance (or second-moment) is roughly on the order of r~2, which can be
large and can slow down convergence. In this section, we study a popular variant of the single-point



gradient estimator, which we call the two-point zeroth-order gradient estimators, that employ two
function values for reducing the variance.
There are two versions of two-point gradient estimators, which are

6P (w7, 2) = E(f(a+12) = f(2) 2

and 0 »
6P (i1, 2) = L(fa+r2) - flw—r2)) 2,
where z ~ Z is again a random perturbation and Z is usually either Unif(S,_1) or N(0,p~1I).

Since Z is isotropic, we can see that both G;Q) (z;r, 2z) and 6;2)(

as the single-point one, i.e.,

x;r, z) have the same expectation

E..z [G%)(x; r, z)} =E,.z {(NSS?)(:E; T, z)} = V- (z).

On the other hand, the following lemma shows that their second-moments have better dependencies
on the smoothing radius r.

Lemma 3. Suppose f is L-smooth, and let Z be either N'(0,p=*I) or Unif(Sy_1). Then

2(p +2)IVf ()1 +

2722 3
: LMY zea,
vz |6 i) ] < Z

2L2p2

r
295 (@) +

1

Z 4s Unif(S,-1),

and the same bound holds for B,z U’é(ﬁ) (7, 2)

Proof. We only give a proof for Ggf)(:z:; T, 2).
We have

P [(2 [F@+72) = fl@) = (Tf (@), r2) + 21T F (@), ) 2]
= 25 11w+ 72) — F@) — (VF@.raP 1] + 2R @ DRI 9

2

i) = BB+ r2) = @ 121

I A

First we consider the second term in (3). Note that

E.[[(Vf(2),2)" - |2]%] = (Vf(2))"E.[||2]*227] Vf ().
If Z is the Gaussian distribution A'(0,p~1I), then

P
2112225 = Z]EZ zpziz) =< P
k=1



where we used E,[z] = 3/p?, and therefore

_pt2
- T2

IEZ[HZH222T] I

If Z is Unif(S,—1), then
1
EZ[HZHQZZT] =E, [ZZT] = ];I,

where we used E,[z;2;] = 0 for ¢ = j by the symmetry of Z. Therefore

z)|%, is N(0,p~ 1),
WE.[|(VF(z), 2)]? - |2]2] = {2(p+2)||Vf( W2 2 s N0, ptT)

Next we bound the first term. By Newton-Leibniz theorem,

flotr2) — ) = / V(e ). 2) dr,

and thus
ot r2) = ) = (V4@ = | [V +12) = V5, 2)
< /OTVf(x+tZ)—Vf($)|||Z||dt
< /OrLt||z||2dt=L2T2|22-
We then get

2
27% E.[|f(z +72) = f(2) = (f(2),72)*[|2]*]

3 27,22
<p+6) PRV Zis N(0,p L),
<

P 2
r2L2p?
2 b)

2p2 L27,.4
< Zw|Elne

Z is Unif(S,-1),

where we used E_[||2]|°] < (p + 6)2/p? for 2 ~ N(0,p~11).

2p||V f(z)]|?, Z is Unif(Sp—1).

O

Lemma 3 shows that the second-moment of either of the two-point gradient estimators does not
blow up as 7 — 0,! and thus achieves much smaller variance compared to the single-point gradient

estimator for small 7.

IFor practical numerical computation, however, r cannot be arbitrarily small due to machine precision.



4 Convergence Analysis for Zeroth-Order Optimization

We now turn our focus to convergence analysis of zeroth-order optimization method, and study the
following iteration as an example:

Tyl = T — va2)($k;7"k» Zk), (4)

i.e., we plug the two-point gradient estimator GS?) into the stochastic gradient descent iteration.
Here each zj is independently drawn from the distribution Z, and 7y is a positive sequence of
smoothing radii that vary with k. We let Z be Unif(S,_1) for simplicity. We assume that f is
convex and L-smooth and has a minimizer z € RP.

Let Fj denote the filtration generated by (z1,...,zr). Our convergence analysis starts by
expanding |z 1 — 2% ||

s — 2|2 = o —2* — @GP (wn e, 1) |2
= ||lzg — 2> - 2 <:c;c — ¥, G}Z)(xk; Tk, zk)> + a? HG}Z) (ks Tk zk)H2 .
By taking the expectation conditioned on Fj and using Lemma 1 and Lemma 3, we get
]E[<xk —a*, G (w7, Zk)>‘ ]:k] = (zr — 2",V fr, (1)),

2 T2L2 2
B 667 tonsri )| \fk] < 2]V (@)l +

and consequently

|2 |2 * 2 o | OPrpL?p?
Elllzesr — 2| Fi] < llow = 27|° = 20dan — 27, V fr () + 207plIV f (i) |* + —I——
Since f,, is convex, we see that
fr (@) = fr (1) 2 (V frlz), 2" — 2k),
and by Lemma 2, we further have
* * * L’I”]%
- <vf7'k($k)7mk7 -z > < frk(w ) - f’l‘k(xk) < f($ ) - f(xk) + 7
Moreover, since f is L-smooth and V f(z*) = 0, we have
IV f(x)l? = IV fzx) = VF()|? < 2L(f(zx) — f(2*)).
Summarizing these results, we get
Q2r2 22
E[ a1 — 22| Fi] < llax — %2 = 2a(1 = 2apL)(f(ax) - f(z)) + alrf + —EE,
and by taking the total expectation, we can get
a?r2[2p?
20(1  20pL)E[f(s) — F(a*)] < Ellrx — *] ~ B[lziss — 2*[2) + alrf + LT



Now we take the telescoping sum and get

K alp? K
20(1 ~ 20pL) 3_Elf(an) — 1(a)] < lra — o[+ aL (14 222) S

k=0

By taking o = ¢/(2pL) for some ¢ € (0,1), we get

S L — x*|2 L K o
I;H;E[f(xk)—f(w*)]é pLljzo —a"||"_ (1+%)@

c(l—c)(K+1) 2(1-¢)

which further implies

. pL|zo — a*|? L Yol
E{OEEK““) J )} S e s (1) S5

The following theorem summarizes the convergence analysis of the iteration (4) for the smooth and
convex setting.

Theorem 2. Suppose f is convex and L-smooth, and has a minimizer x € RP. Let « = ¢/(pL) for
some ¢ € (0,1), and let i, be a positive sequence of smoothing radii such that Ei{:o r? = R? < 4oo0.
Then the zeroth-order optimization iteration (4) achieves

. p  (Llzo —a*|*  R’L(c+4/p)
E| min f(we) = f )]SK—i-l( c(ol—c) TR0 )

Corollary 2. Let ¢ > 0 be arbitrary. Then, under the conditions of Theorem (2), the number of
zeroth-order queries needed to achieve

E[ min_f(ax) - f(x*)} <

0<k<K

s bounded by
2AK +1) = 0(3) .

€

Remark 1. For smooth constrained convex optimization, the best convergence rate established so
far seems to be O(y/p/K) (or O(p/e?) in terms of iteration complexity), which is worse than the
unconstrained case. This is different from first-order methods where projected gradient descent can
still achieve O(1/K) convergence rate for smooth constrained convex objectives.

4.1 Convergence Analysis for Smooth and Strongly Convex f

Theorem 3. Suppose f is m-strongly convex and L-smooth, and has a minimizer x* € RP. Let
a = c/(pL) for some c € (0,1). Then the zeroth-order optimization iteration (4) achieves

+4 —
E[Jlex — 2*[7] < p*lleo — a2 + SCTAP) Z

where
c(l—c)m

:1—
P 2pL



Proof. Much of the derivation for the smooth and convex setting can be applied here, and we have
QQT,%LQpQ

E[llzrsr — "] Fi] < [l — 27| = 2a(1 = 20pL)(f(2x) — f(z")) + aLri + 5

Now since f is m-strongly convex, we have
Flaw) = f@®) 2 (V@) an — ") + Fllak — 2| = o o — 2™

Since 1 — 2apL > 0, we see that

aLp?
E[l|@r1 — 2*|?| Fi] < (1 — am(1 — 2apL)) |lax — 2*|* + oL <1 + 2]9 > 2.

By plugging in o = ¢/(2pL) and taking the total expectation, we get

* c(1—c)m X c(c+4/p)
s — 17 < (1~ LI ) Bl -] 4 LD

The final bound can then be shown by mathematical induction. O

5 Notes and References

The main reference for this lecture is [1], which also considers nonsmooth convex optimization
and nonconvex optimization problems. Some other related references on zeroth-order gradient
estimation methods include:

e [2] considers constrained nonsmooth online convex optimization where only one function eval-
uation is available for the objective function at each time instant. The paper provides basic
properties of the single-point gradient estimator.

e [3] considers unconstrained stochastic optimization where two function evaluations are avail-

able for each random sample, and employs the two-point gradient estimator G;Q). Convergence
analysis is provided for both convex and nonconvex settings with smooth objectives.

o [4] considers constrained stochastic convex optimization where two function evaluations are
available for each random sample, and combines two-point gradient estimators with the
stochastic mirror descent method. It also establishes information-theoretic lower bounds on
the optimal convergence rate.

e [5] considers constrained online convex optimization where two function evaluations are avail-
able for the objective function at each time instant. The paper employs (NE;Q) for handling
convex but nonsmooth objectives, and shows that the proposed algorithm achieves the opti-
mal convergence rate.

e [6] proposes the residual feedback method for reducing the variance of one-point gradient
estimator:

Thtl1 =T — O~ g(f(xk + TZk) — f(CL'k,1 + rzk,l))zk.

This method improves on the convergence rate compared to the vanilla single-point gradient
estimation method. [7] studies accelerating single-point zeroth-order methods and derive the
residual feedback method from the perspective of extreme seeking control.



e [8] provides a zeroth-order stochastic coordinate descent method, in which the two-point
gradient estimator 6(2) is employed, and the distribution Z is the uniform distribution on the
standard basis {e;}}_; of RP. The paper also considers the setting of asynchronous parallel
optimization.

The paper [9] provides a recent survey of literature on zeroth-order optimization methods.

A Proof of Lemma 1

Z is N(0,p~I). In this case, we have

2
o) = 2WW/ st o) exp (2120 ay
B pllu—z|*\ 1
- <2w/p>p/2 / flu) ex"(‘ 22 ) o

where in the second equality we substituted © = x + ry. We can then calculate the gradient of

fo(@) b
Vo) = V. (W /R Fwes (W) :pdu>

1 u— z||? r—u) 1
_ W/pf(u)exp<_p| sl ),p( 0y,

1 2||?
W . rf(x—H“z)z exp( p||2||> dz:EzNg{gf(x—Frz)z},

where in the second step we interchange differentiation and integration.

Z is Unif(Sy—1). Let V, denote the p-dimensional volume of B,,, and let S,_; denote the surface
area (or (p — 1)-dimensional volume) of S,_;. Then for any v € RP, we have

v V@) =v-V, (é}/@pf(wrry)dy)

=Vi/ V- Vaf (@ +ry) dy

—/ flz+rz)v)dz

V}:/S - flx+rz)v-2zdE(z)

:’U.<T‘Sp 1/ flz+rz)zd3(z ))zv-EzNg[ff(a:—&—rz)z




Here in the fourth step, we used Gauss’s divergence theorem and the fact that the unit normal
vector at z on S,_1 is just z, and we use dX(z) to denote the surface element of S,_; at z; in the
fifth step we used S,_1 = pV},. By the arbitrariness of v we get the desired result.
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