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1 Review of Gradient Descent

Consider the following unconstrained optimization problem

min
x∈Rp

f(x) (1)

where f : Rp → R is continuously differentiable. The gradient descent iteration for minimizing f(x)
over x ∈ Rp is given by

xk+1 = xk − α∇f(xk), (GD)

where α > 0 is the step size. The following theorem establishes the convergence of gradient descent
for smooth and convex objective functions.

Theorem 1. Suppose f : Rp → R is convex and L-smooth, and has a minimizer x∗ ∈ Rp.

1. By choosing α = 1/L, the gradient descent iteration (GD) achieves

f(xk)− f(x∗) ≤ L∥x0 − x∗∥2

2(k + 1)
.

2. If f is also m-strongly convex, then by choosing α = 2/(L + m), the gradient descent itera-
tion (GD) achieves

∥xk − x∗∥ ≤
(
L−m

L+m

)k

∥x0 − x∗∥, f(xk)− f(x∗) ≤ L

2

(
L−m

L+m

)2k

∥x0 − x∗∥2.

Corollary 1. Suppose f : Rp → R is convex and L-smooth, and has a minimizer x∗ ∈ Rp. Let
ϵ > 0 be arbitrary.

1. The number of gradient descent iterations needed to achieve f(xk)−f(x∗) ≤ ϵ can be bounded
by

k = O

(
1

ϵ

)
.

2. If f is also m-strongly convex, then the number of gradient descent iterations needed to achieve
f(xk)− f(x∗) ≤ ϵ can be bounded by

k = O

(
ln

1

ϵ

)
.
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2 Zeroth-Order Gradient Estimation

Now suppose we don’t have access to the gradients of the function f . Instead, there is a zeroth-
order oracle that can accept an arbitrary x ∈ Rp and output the corresponding value f(x), and we
can only employ this zeroth-order oracle finitely many times for optimizing f . In this lecture, we
introduce a class of methods based on gradient estimation using zeroth-order information.

We start with the following single-point zeroth-order gradient estimator:

Gf (x; r, z) =
p

r
f(x+ rz) z, z ∼ Z. (2)

Here r > 0 is a positive parameter called the smoothing radius; z is a p-dimensional random vector
following the probability distribution Z, and we will just call it the random perturbation. Usually,
the Z is chosen to be one of the following:

1. The Gaussian distribution N (0, p−1I).

2. The uniform distribution on the unit sphere Sp−1 := {x ∈ Rp : ∥x∥ = 1}, which we denote by
Unif(Sp−1).

The following lemma characterizes the expectation of the single-point gradient estimator (2).

Lemma 1. Suppose f : Rp → R is L-smooth.

1. Let Z be N (0, p−1I). Then
Ez∼Z [Gf (x; r, z)] = ∇fr(x),

where fr : Rp → R is given by

fr(x) := Ey∼Y [f(x+ ry)],

and Y is the Gaussian distribution N (0, p−1I).

2. let Z be Unif(Sp−1). Then
Ez∼Z [Gf (x; r, z)] = ∇fr(x),

where fr : Rp → R is given by

fr(x) := Ey∼Y [f(x+ ry)],

and Y is the uniform distribution on the unit ball Bp := {x ∈ Rp : ∥x∥ ≤ 1}.

Lemma 1 shows that the expectation of Gf (x; r, z) gives the gradient of a smooth version of f .
The following lemma provides further properties of fr and ∇fr.

Lemma 2. Suppose f is convex and L-smooth. Let Z be either N (0, p−1I) or Unif(Sp−1), and let
fr denote the corresponding smooth version of f . Then fr is convex, L-smooth, and satisfies

f(x) ≤ fr(x) ≤ f(x) +
Lr2

2
,

and
∥∇fr(x)−∇f(x)∥ ≤ Lr.
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Proof. The convexity of fr follows by noting that

fr(θx1 + (1− θ)x2) = Ey∼Y [f(θx1 + (1− θ)x2 + ry)]

= Ey∼Y [f(θ(x1 + ry) + (1− θ)(x2 + ry))]

≤ Ey∼Y [θf(x1 + ry) + (1− θ)f(x2 + ry)] = θfr(x1) + (1− θ)fr(x2)

for any θ ∈ [0, 1] and any x1, x2.
To show the L-smoothness of fr, let x1, x2 ∈ Rp be arbitrary, and we have

∥∇fr(x1)−∇fr(x2)∥ = ∥∇Ey∼Y [f(x1 + ry)]−∇Ey∼Y [f(x2 + ry)]∥
= ∥Ey∼Y [∇f(x1 + ry)−∇f(x2 + ry)]∥
≤ Ey∼Y [∥∇f(x1 + ry)−∇f(x2 + ry)∥]
≤ Ey∼Y [L∥x1 − x2∥] = L∥x1 − x2∥,

where in the second step we interchanged differentiation with expectation (which can be justified
by the dominance convergence theorem), and in the fourth step we used the L-smoothness of f .

Now, by the convexity and smoothness of f , we have

f(x) + ⟨∇f(x), ry⟩ ≤ f(x+ ry) ≤ f(x) + ⟨∇f(x), ry⟩+ L

2
∥ry∥2.

Now we take the expectation with respect to y ∼ Y. We have Ey∼Y [⟨∇f(x), ry⟩] = 0 since Y is
isotropic, and therefore

f(x) ≤ Ey∼Y [f(x+ ry)] ≤ f(x) +
Lr2

2
Ey∼Y

[
∥y∥2

]
,

which gives the first inequality.
Now regarding ∇fr, we have

∥∇fr(x)−∇f(x)∥ = ∥∇x Ey∼Y [f(x+ ry)− f(x)]∥
= ∥Ey∼Y [∇xf(x+ ry)−∇xf(x)]∥
≤ Ey∼Y [∥∇f(x+ ry)−∇f(x)∥]
≤ Ey∼Y [L∥ry∥] ≤ Lr,

where in the second step we interchanged differentiation with expectation (which can be justified by
the dominance convergence theorem), and in the fourth step we employ the L-smoothness of f .

Lemma 2 bounds the differences fr − f and ∇fr − ∇f , and we can see that they both go to
zero when r → 0. Consequently, we can view Gf (x; r, z) as a stochastic gradient of f with a bias
that can be controlled by the smoothing radius r.

3 Two-Point Gradient Estimators

The single-point gradient estimator (2) provides a stochastic gradient with a nonzero but control-
lable bias. However, its variance (or second-moment) is roughly on the order of r−2, which can be
large and can slow down convergence. In this section, we study a popular variant of the single-point
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gradient estimator, which we call the two-point zeroth-order gradient estimators, that employ two
function values for reducing the variance.

There are two versions of two-point gradient estimators, which are

G
(2)
f (x; r, z) =

p

r
(f(x+ rz)− f(x)) z

and
G̃
(2)
f (x; r, z) =

p

2r
(f(x+ rz)− f(x− rz)) z,

where z ∼ Z is again a random perturbation and Z is usually either Unif(Sp−1) or N (0, p−1I).

Since Z is isotropic, we can see that both G
(2)
f (x; r, z) and G̃

(2)
f (x; r, z) have the same expectation

as the single-point one, i.e.,

Ez∼Z

[
G
(2)
f (x; r, z)

]
= Ez∼Z

[
G̃
(2)
f (x; r, z)

]
= ∇fr(x).

On the other hand, the following lemma shows that their second-moments have better dependencies
on the smoothing radius r.

Lemma 3. Suppose f is L-smooth, and let Z be either N (0, p−1I) or Unif(Sp−1). Then

Ez∼Z

[∥∥∥G(2)
f (x; r, z)

∥∥∥2] ≤

2(p+ 2)∥∇f(x)∥2 + r2L2p2

2

(
p+ 6

p

)3

, Z is N (0, p−1I),

2p∥∇f(x)∥2 + r2L2p2

2
, Z is Unif(Sp−1),

and the same bound holds for Ez∼Z

[∥∥∥G̃(2)
f (x; r, z)

∥∥∥2].
Proof. We only give a proof for G

(2)
f (x; r, z).

We have

Ez

[∥∥∥G(2)
f (x; r, z)

∥∥∥2] = p2

r2
Ez

[
|f(x+ rz)− f(x)|2 · ∥z∥2

]
≤ p2

r2
Ez

[(
2 |f(x+ rz)− f(x)− ⟨∇f(x), rz⟩|2 + 2|⟨∇f(x), rz⟩|2

)
∥z∥2

]
=

2p2

r2
Ez

[
|f(x+ rz)− f(x)− ⟨∇f(x), rz⟩|2 ∥z∥2

]
+ 2p2Ez

[
|⟨∇f(x), z⟩|2∥z∥2

]
(3)

First we consider the second term in (3). Note that

Ez

[
|⟨∇f(x), z⟩|2 · ∥z∥2

]
= (∇f(x))⊤Ez

[
∥z∥2zz⊤

]
∇f(x).

If Z is the Gaussian distribution N (0, p−1I), then

Ez

[
∥z∥2zizj

]
=

p∑
k=1

Ez

[
z2kzizj

]
=


p+ 2

p2
, i = j,

0, i ̸= j,
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where we used Ez[z
4
i ] = 3/p2, and therefore

Ez

[
∥z∥2zz⊤

]
=

p+ 2

p2
I.

If Z is Unif(Sp−1), then

Ez

[
∥z∥2zz⊤

]
= Ez

[
zz⊤

]
=

1

p
I,

where we used Ez[zizj ] = 0 for i = j by the symmetry of Z. Therefore

2p2Ez

[
|⟨∇f(x), z⟩|2 · ∥z∥2

]
=

{
2(p+ 2)∥∇f(x)∥2, Z is N (0, p−1I),

2p∥∇f(x)∥2, Z is Unif(Sp−1).

Next we bound the first term. By Newton-Leibniz theorem,

f(x+ rz)− f(x) =

∫ r

0

⟨∇f(x+ tz), z⟩ dt,

and thus

|f(x+ rz)− f(x)− ⟨∇f(x), rz⟩| =
∣∣∣∣∫ r

0

⟨∇f(x+ tz)−∇f(x), z⟩ dt
∣∣∣∣

≤
∫ r

0

∥∇f(x+ tz)−∇f(x)∥∥z∥ dt

≤
∫ r

0

Lt∥z∥2 dt = Lr2

2
∥z∥2.

We then get

2p2

r2
Ez

[
|f(x+ rz)− f(x)− ⟨f(x), rz⟩|2∥z∥2

]

≤ 2p2

r2
Ez

[
L2r4

4
∥z∥6

]
≤


(
p+ 6

p

)3
r2L2p2

2
, Z is N (0, p−1I),

r2L2p2

2
, Z is Unif(Sp−1),

where we used Ez[∥z∥6] ≤ (p+ 6)3/p3 for z ∼ N (0, p−1I).

Lemma 3 shows that the second-moment of either of the two-point gradient estimators does not
blow up as r → 0,1 and thus achieves much smaller variance compared to the single-point gradient
estimator for small r.

1For practical numerical computation, however, r cannot be arbitrarily small due to machine precision.
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4 Convergence Analysis for Zeroth-Order Optimization

We now turn our focus to convergence analysis of zeroth-order optimization method, and study the
following iteration as an example:

xk+1 = xk − αG
(2)
f (xk; rk, zk), (4)

i.e., we plug the two-point gradient estimator G
(2)
f into the stochastic gradient descent iteration.

Here each zk is independently drawn from the distribution Z, and rk is a positive sequence of
smoothing radii that vary with k. We let Z be Unif(Sp−1) for simplicity. We assume that f is
convex and L-smooth and has a minimizer x ∈ Rp.

Let Fk denote the filtration generated by (x1, . . . , xk). Our convergence analysis starts by
expanding ∥xk+1 − x∗∥2:

∥xk+1 − x∗∥2 = ∥xk − x∗ − αG
(2)
f (xk; rk, zk)∥2

= ∥xk − x∗∥2 − 2α
〈
xk − x∗,G

(2)
f (xk; rk, zk)

〉
+ α2

∥∥∥G(2)
f (xk; rk, zk)

∥∥∥2 .
By taking the expectation conditioned on Fk and using Lemma 1 and Lemma 3, we get

E
[〈

xk − x∗,G
(2)
f (xk; rk, zk)

〉∣∣∣Fk

]
= ⟨xk − x∗,∇frk(xk)⟩,

E
[∥∥∥G(2)

f (xk; rk, zk)
∥∥∥2∣∣∣∣Fk

]
≤ 2p∥∇f(xk)∥2 +

r2kL
2p2

2
,

and consequently

E
[
∥xk+1 − x∗∥2

∣∣Fk

]
≤ ∥xk − x∗∥2 − 2α⟨xk − x∗,∇frk(xk)⟩+ 2α2p∥∇f(xk)∥2 +

α2r2kL
2p2

2
.

Since frk is convex, we see that

frk(x
∗)− frk(xk) ≥ ⟨∇fr(xk), x

∗ − xk⟩,

and by Lemma 2, we further have

−⟨∇frk(xk), xk − x∗⟩ ≤ frk(x
∗)− frk(xk) ≤ f(x∗)− f(xk) +

Lr2k
2

.

Moreover, since f is L-smooth and ∇f(x∗) = 0, we have

∥∇f(xk)∥2 = ∥∇f(xk)−∇f(x∗)∥2 ≤ 2L(f(xk)− f(x∗)).

Summarizing these results, we get

E
[
∥xk+1 − x∗∥2

∣∣Fk

]
≤ ∥xk − x∗∥2 − 2α(1− 2αpL)(f(xk)− f(x∗)) + αLr2k +

α2r2kL
2p2

2
,

and by taking the total expectation, we can get

2α(1− 2αpL)E[f(xk)− f(x∗)] ≤ E
[
∥xk − x∗∥2

]
− E

[
∥xk+1 − x∗∥2

]
+ αLr2k +

α2r2kL
2p2

2
.
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Now we take the telescoping sum and get

2α(1− 2αpL)

K∑
k=0

E[f(xk)− f(x∗)] ≤ ∥x0 − x∗∥2 + αL

(
1 +

αLp2

2

) K∑
k=0

r2k.

By taking α = c/(2pL) for some c ∈ (0, 1), we get

1

K + 1

K∑
k=0

E[f(xk)− f(x∗)] ≤ pL∥x0 − x∗∥2

c(1− c)(K + 1)
+

L

2(1− c)

(
1 +

cp

4

) ∑K
k=0 r

2
k

K + 1
,

which further implies

E
[

min
0≤k≤K

f(xk)− f(x∗)

]
≤ pL∥x0 − x∗∥2

c(1− c)(K + 1)
+

L

2(1− c)

(
1 +

cp

4

) ∑K
k=0 r

2
k

K + 1
.

The following theorem summarizes the convergence analysis of the iteration (4) for the smooth and
convex setting.

Theorem 2. Suppose f is convex and L-smooth, and has a minimizer x ∈ Rp. Let α = c/(pL) for

some c ∈ (0, 1), and let rk be a positive sequence of smoothing radii such that
∑K

k=0 r
2
k = R2 < +∞.

Then the zeroth-order optimization iteration (4) achieves

E
[

min
0≤k≤K

f(xk)− f(x∗)

]
≤ p

K + 1

(
L∥x0 − x∗∥2

c(1− c)
+

R2L(c+ 4/p)

8(1− c)

)
.

Corollary 2. Let ϵ > 0 be arbitrary. Then, under the conditions of Theorem (2), the number of
zeroth-order queries needed to achieve

E
[

min
0≤k≤K

f(xk)− f(x∗)

]
≤ ϵ

is bounded by

2(K + 1) = O
(p
ϵ

)
.

Remark 1. For smooth constrained convex optimization, the best convergence rate established so
far seems to be O(

√
p/K) (or O(p/ϵ2) in terms of iteration complexity), which is worse than the

unconstrained case. This is different from first-order methods where projected gradient descent can
still achieve O(1/K) convergence rate for smooth constrained convex objectives.

4.1 Convergence Analysis for Smooth and Strongly Convex f

Theorem 3. Suppose f is m-strongly convex and L-smooth, and has a minimizer x∗ ∈ Rp. Let
α = c/(pL) for some c ∈ (0, 1). Then the zeroth-order optimization iteration (4) achieves

E
[
∥xk − x∗∥2

]
≤ ρk∥x0 − x∗∥2 + c(c+ 4/p)

8

k−1∑
τ=0

ρτr2k−1−τ ,

where

ρ = 1− c(1− c)m

2pL
.
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Proof. Much of the derivation for the smooth and convex setting can be applied here, and we have

E
[
∥xk+1 − x∗∥2

∣∣Fk

]
≤ ∥xk − x∗∥2 − 2α(1− 2αpL)(f(xk)− f(x∗)) + αLr2k +

α2r2kL
2p2

2
.

Now since f is m-strongly convex, we have

f(xk)− f(x∗) ≥ ⟨∇f(x∗), xk − x∗⟩+ m

2
∥xk − x∗∥2 =

m

2
∥xk − x∗∥2.

Since 1− 2αpL > 0, we see that

E
[
∥xk+1 − x∗∥2

∣∣Fk

]
≤ (1− αm(1− 2αpL)) ∥xk − x∗∥2 + αL

(
1 +

αLp2

2

)
r2k.

By plugging in α = c/(2pL) and taking the total expectation, we get

E
[
∥xk+1 − x∗∥2

]
≤
(
1− c(1− c)m

2pL

)
E
[
∥xk − x∗∥2

]
+

c(c+ 4/p)

8
r2k.

The final bound can then be shown by mathematical induction.

5 Notes and References

The main reference for this lecture is [1], which also considers nonsmooth convex optimization
and nonconvex optimization problems. Some other related references on zeroth-order gradient
estimation methods include:

• [2] considers constrained nonsmooth online convex optimization where only one function eval-
uation is available for the objective function at each time instant. The paper provides basic
properties of the single-point gradient estimator.

• [3] considers unconstrained stochastic optimization where two function evaluations are avail-

able for each random sample, and employs the two-point gradient estimator G
(2)
f . Convergence

analysis is provided for both convex and nonconvex settings with smooth objectives.

• [4] considers constrained stochastic convex optimization where two function evaluations are
available for each random sample, and combines two-point gradient estimators with the
stochastic mirror descent method. It also establishes information-theoretic lower bounds on
the optimal convergence rate.

• [5] considers constrained online convex optimization where two function evaluations are avail-

able for the objective function at each time instant. The paper employs G̃
(2)
f for handling

convex but nonsmooth objectives, and shows that the proposed algorithm achieves the opti-
mal convergence rate.

• [6] proposes the residual feedback method for reducing the variance of one-point gradient
estimator:

xk+1 = xk − α · p
r
(f(xk + rzk)− f(xk−1 + rzk−1))zk.

This method improves on the convergence rate compared to the vanilla single-point gradient
estimation method. [7] studies accelerating single-point zeroth-order methods and derive the
residual feedback method from the perspective of extreme seeking control.
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• [8] provides a zeroth-order stochastic coordinate descent method, in which the two-point

gradient estimator G̃
(2)
f is employed, and the distribution Z is the uniform distribution on the

standard basis {ei}pi=1 of Rp. The paper also considers the setting of asynchronous parallel
optimization.

The paper [9] provides a recent survey of literature on zeroth-order optimization methods.

A Proof of Lemma 1

Z is N (0, p−1I). In this case, we have

fr(x) =
1

(2π/p)p/2

∫
Rp

f(x+ ry) exp

(
−p∥y∥2

2

)
dy

=
1

(2π/p)p/2

∫
Rp

f(u) exp

(
−p∥u− x∥2

2r2

)
1

rp
du,

where in the second equality we substituted u = x + ry. We can then calculate the gradient of
fr(x) by

∇fr(x) = ∇x

(
1

(2π/p)p/2

∫
Rp

f(u) exp

(
−p∥u− x∥2

2r2

)
1

rp
du

)
=

1

(2π/p)p/2

∫
Rp

f(u)∇x

(
exp

(
−p∥u− x∥2

2r2

))
1

rp
du

=
1

(2π/p)p/2

∫
Rp

f(u) exp

(
−p∥u− x∥2

2r2

)
· p(x− u)

r2
1

rp
du

=
1

(2π/p)p/2

∫
Rp

p

r
f(x+ rz)z · exp

(
−p∥z∥2

2

)
dz = Ez∼Z

[p
r
f(x+ rz)z

]
,

where in the second step we interchange differentiation and integration.

Z is Unif(Sp−1). Let Vp denote the p-dimensional volume of Bp, and let Sp−1 denote the surface
area (or (p− 1)-dimensional volume) of Sp−1. Then for any v ∈ Rp, we have

v · ∇fr(x) = v · ∇x

(
1

Vp

∫
Bp

f(x+ ry) dy

)

=
1

Vp

∫
Bp

v · ∇xf(x+ ry) dy

=
1

Vp

∫
Bp

1

r
∇z · (f(x+ rz)v) dz

=
1

rVp

∫
Sp−1

f(x+ rz)v · z dΣ(z)

= v ·

(
p

r

1

Sp−1

∫
Sp−1

f(x+ rz)z dΣ(z)

)
= v · Ez∼Z

[p
r
f(x+ rz)z

]
.
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Here in the fourth step, we used Gauss’s divergence theorem and the fact that the unit normal
vector at z on Sp−1 is just z, and we use dΣ(z) to denote the surface element of Sp−1 at z; in the
fifth step we used Sp−1 = pVp. By the arbitrariness of v we get the desired result.

References

[1] Y. Nesterov and V. Spokoiny, “Random gradient-free minimization of convex functions,” Foun-
dations of Computational Mathematics, vol. 17, no. 2, pp. 527–566, 2017.

[2] A. D. Flaxman, A. T. Kalai, and H. B. McMahan, “Online convex optimization in the bandit
setting: gradient descent without a gradient,” in Proceedings of the Sixteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 385–394, 2005.

[3] S. Ghadimi and G. Lan, “Stochastic first-and zeroth-order methods for nonconvex stochastic
programming,” SIAM Journal on Optimization, vol. 23, no. 4, pp. 2341–2368, 2013.

[4] J. C. Duchi, M. I. Jordan, M. J. Wainwright, and A. Wibisono, “Optimal rates for zero-order
convex optimization: The power of two function evaluations,” IEEE Transactions on Informa-
tion Theory, vol. 61, no. 5, pp. 2788–2806, 2015.

[5] O. Shamir, “An optimal algorithm for bandit and zero-order convex optimization with two-point
feedback,” The Journal of Machine Learning Research, vol. 18, no. 1, pp. 1703–1713, 2017.

[6] Y. Zhang, Y. Zhou, K. Ji, and M. M. Zavlanos, “A new one-point residual-feedback oracle for
black-box learning and control,” Automatica, vol. 136, p. 110006, 2022.

[7] X. Chen, Y. Tang, and N. Li, “Improve single-point zeroth-order optimization using high-pass
and low-pass filters from extremum seeking control,” arXiv preprint arXiv:2111.01701, 2021.

[8] X. Lian, H. Zhang, C.-J. Hsieh, Y. Huang, and J. Liu, “A comprehensive linear speedup analysis
for asynchronous stochastic parallel optimization from zeroth-order to first-order,” in Advances
in Neural Information Processing Systems (D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and
R. Garnett, eds.), vol. 29, Curran Associates, Inc., 2016.

[9] S. Liu, P.-Y. Chen, B. Kailkhura, G. Zhang, A. O. Hero III, and P. K. Varshney, “A primer
on zeroth-order optimization in signal processing and machine learning: Principals, recent ad-
vances, and applications,” IEEE Signal Processing Magazine, vol. 37, no. 5, pp. 43–54, 2020.

10


