Introduction to Zeroth-Order Optimization

Yujie Tang

1 Review of Gradient Descent

Consider the following unconstrained optimization problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{p}} f(x) \tag{1}
\end{equation*}
$$

where $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ is continuously differentiable. The gradient descent iteration for minimizing $f(x)$ over $x \in \mathbb{R}^{p}$ is given by

$$
\begin{equation*}
x_{k+1}=x_{k}-\alpha \nabla f\left(x_{k}\right) \tag{GD}
\end{equation*}
$$

where $\alpha>0$ is the step size. The following theorem establishes the convergence of gradient descent for smooth and convex objective functions.
Theorem 1. Suppose $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ is convex and L-smooth, and has a minimizer $x^{*} \in \mathbb{R}^{p}$.

1. By choosing $\alpha=1 / L$, the gradient descent iteration (GD) achieves

$$
f\left(x_{k}\right)-f\left(x^{*}\right) \leq \frac{L\left\|x_{0}-x^{*}\right\|^{2}}{2(k+1)}
$$

2. If f is also m-strongly convex, then by choosing $\alpha=2 /(L+m)$, the gradient descent iteration (GD) achieves

$$
\left\|x_{k}-x^{*}\right\| \leq\left(\frac{L-m}{L+m}\right)^{k}\left\|x_{0}-x^{*}\right\|, \quad f\left(x_{k}\right)-f\left(x^{*}\right) \leq \frac{L}{2}\left(\frac{L-m}{L+m}\right)^{2 k}\left\|x_{0}-x^{*}\right\|^{2}
$$

Corollary 1. Suppose $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ is convex and L-smooth, and has a minimizer $x^{*} \in \mathbb{R}^{p}$. Let $\epsilon>0$ be arbitrary.

1. The number of gradient descent iterations needed to achieve $f\left(x_{k}\right)-f\left(x^{*}\right) \leq \epsilon$ can be bounded by

$$
k=O\left(\frac{1}{\epsilon}\right)
$$

2. If f is also m-strongly convex, then the number of gradient descent iterations needed to achieve $f\left(x_{k}\right)-f\left(x^{*}\right) \leq \epsilon$ can be bounded by

$$
k=O\left(\ln \frac{1}{\epsilon}\right)
$$

2 Zeroth-Order Gradient Estimation

Now suppose we don't have access to the gradients of the function f. Instead, there is a zerothorder oracle that can accept an arbitrary $x \in \mathbb{R}^{p}$ and output the corresponding value $f(x)$, and we can only employ this zeroth-order oracle finitely many times for optimizing f. In this lecture, we introduce a class of methods based on gradient estimation using zeroth-order information.

We start with the following single-point zeroth-order gradient estimator:

$$
\begin{equation*}
\mathrm{G}_{f}(x ; r, z)=\frac{p}{r} f(x+r z) z, \quad z \sim \mathcal{Z} \tag{2}
\end{equation*}
$$

Here $r>0$ is a positive parameter called the smoothing radius; z is a p-dimensional random vector following the probability distribution \mathcal{Z}, and we will just call it the random perturbation. Usually, the \mathcal{Z} is chosen to be one of the following:

1. The Gaussian distribution $\mathcal{N}\left(0, p^{-1} I\right)$.
2. The uniform distribution on the unit sphere $\mathbb{S}_{p-1}:=\left\{x \in \mathbb{R}^{p}:\|x\|=1\right\}$, which we denote by $\operatorname{Unif}\left(\mathbb{S}_{p-1}\right)$.

The following lemma characterizes the expectation of the single-point gradient estimator (2).
Lemma 1. Suppose $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ is L-smooth.

1. Let \mathcal{Z} be $\mathcal{N}\left(0, p^{-1} I\right)$. Then

$$
\mathbb{E}_{z \sim \mathcal{Z}}\left[\mathrm{G}_{f}(x ; r, z)\right]=\nabla f_{r}(x)
$$

where $f_{r}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ is given by

$$
f_{r}(x):=\mathbb{E}_{y \sim \mathcal{Y}}[f(x+r y)],
$$

and \mathcal{Y} is the Gaussian distribution $\mathcal{N}\left(0, p^{-1} I\right)$.
2. let \mathcal{Z} be $\operatorname{Unif}\left(\mathbb{S}_{p-1}\right)$. Then

$$
\mathbb{E}_{z \sim \mathcal{Z}}\left[\mathrm{G}_{f}(x ; r, z)\right]=\nabla f_{r}(x)
$$

where $f_{r}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ is given by

$$
f_{r}(x):=\mathbb{E}_{y \sim \mathcal{Y}}[f(x+r y)],
$$

and \mathcal{Y} is the uniform distribution on the unit ball $\mathbb{B}_{p}:=\left\{x \in \mathbb{R}^{p}:\|x\| \leq 1\right\}$.
Lemma 1 shows that the expectation of $\mathrm{G}_{f}(x ; r, z)$ gives the gradient of a smooth version of f. The following lemma provides further properties of f_{r} and ∇f_{r}.
Lemma 2. Suppose f is convex and L-smooth. Let \mathcal{Z} be either $\mathcal{N}\left(0, p^{-1} I\right)$ or $\operatorname{Unif}\left(\mathbb{S}_{p-1}\right)$, and let f_{r} denote the corresponding smooth version of f. Then f_{r} is convex, L-smooth, and satisfies

$$
f(x) \leq f_{r}(x) \leq f(x)+\frac{L r^{2}}{2}
$$

and

$$
\left\|\nabla f_{r}(x)-\nabla f(x)\right\| \leq L r
$$

Proof. The convexity of f_{r} follows by noting that

$$
\begin{aligned}
f_{r}\left(\theta x_{1}+(1-\theta) x_{2}\right) & =\mathbb{E}_{y \sim \mathcal{Y}}\left[f\left(\theta x_{1}+(1-\theta) x_{2}+r y\right)\right] \\
& =\mathbb{E}_{y \sim \mathcal{Y}}\left[f\left(\theta\left(x_{1}+r y\right)+(1-\theta)\left(x_{2}+r y\right)\right)\right] \\
& \leq \mathbb{E}_{y \sim \mathcal{Y}}\left[\theta f\left(x_{1}+r y\right)+(1-\theta) f\left(x_{2}+r y\right)\right]=\theta f_{r}\left(x_{1}\right)+(1-\theta) f_{r}\left(x_{2}\right)
\end{aligned}
$$

for any $\theta \in[0,1]$ and any x_{1}, x_{2}.
To show the L-smoothness of f_{r}, let $x_{1}, x_{2} \in \mathbb{R}^{p}$ be arbitrary, and we have

$$
\begin{aligned}
\left\|\nabla f_{r}\left(x_{1}\right)-\nabla f_{r}\left(x_{2}\right)\right\| & =\left\|\nabla \mathbb{E}_{y \sim \mathcal{Y}}\left[f\left(x_{1}+r y\right)\right]-\nabla \mathbb{E}_{y \sim \mathcal{Y}}\left[f\left(x_{2}+r y\right)\right]\right\| \\
& =\left\|\mathbb{E}_{y \sim \mathcal{Y}}\left[\nabla f\left(x_{1}+r y\right)-\nabla f\left(x_{2}+r y\right)\right]\right\| \\
& \leq \mathbb{E}_{y \sim \mathcal{Y}}\left[\left\|\nabla f\left(x_{1}+r y\right)-\nabla f\left(x_{2}+r y\right)\right\|\right] \\
& \leq \mathbb{E}_{y \sim \mathcal{Y}}\left[L\left\|x_{1}-x_{2}\right\|\right]=L\left\|x_{1}-x_{2}\right\|
\end{aligned}
$$

where in the second step we interchanged differentiation with expectation (which can be justified by the dominance convergence theorem), and in the fourth step we used the L-smoothness of f.

Now, by the convexity and smoothness of f, we have

$$
f(x)+\langle\nabla f(x), r y\rangle \leq f(x+r y) \leq f(x)+\langle\nabla f(x), r y\rangle+\frac{L}{2}\|r y\|^{2}
$$

Now we take the expectation with respect to $y \sim \mathcal{Y}$. We have $\mathbb{E}_{y \sim \mathcal{Y}}[\langle\nabla f(x), r y\rangle]=0$ since \mathcal{Y} is isotropic, and therefore

$$
f(x) \leq \mathbb{E}_{y \sim \mathcal{Y}}[f(x+r y)] \leq f(x)+\frac{L r^{2}}{2} \mathbb{E}_{y \sim \mathcal{Y}}\left[\|y\|^{2}\right]
$$

which gives the first inequality.
Now regarding ∇f_{r}, we have

$$
\begin{aligned}
\left\|\nabla f_{r}(x)-\nabla f(x)\right\| & =\left\|\nabla_{x} \mathbb{E}_{y \sim \mathcal{Y}}[f(x+r y)-f(x)]\right\| \\
& =\left\|\mathbb{E}_{y \sim \mathcal{Y}}\left[\nabla_{x} f(x+r y)-\nabla_{x} f(x)\right]\right\| \\
& \leq \mathbb{E}_{y \sim \mathcal{Y}}[\|\nabla f(x+r y)-\nabla f(x)\|] \\
& \leq \mathbb{E}_{y \sim \mathcal{Y}}[L\|r y\|] \leq L r,
\end{aligned}
$$

where in the second step we interchanged differentiation with expectation (which can be justified by the dominance convergence theorem), and in the fourth step we employ the L-smoothness of f.

Lemma 2 bounds the differences $f_{r}-f$ and $\nabla f_{r}-\nabla f$, and we can see that they both go to zero when $r \rightarrow 0$. Consequently, we can view $\mathrm{G}_{f}(x ; r, z)$ as a stochastic gradient of f with a bias that can be controlled by the smoothing radius r.

3 Two-Point Gradient Estimators

The single-point gradient estimator (2) provides a stochastic gradient with a nonzero but controllable bias. However, its variance (or second-moment) is roughly on the order of r^{-2}, which can be large and can slow down convergence. In this section, we study a popular variant of the single-point
gradient estimator, which we call the two-point zeroth-order gradient estimators, that employ two function values for reducing the variance.

There are two versions of two-point gradient estimators, which are

$$
\mathrm{G}_{f}^{(2)}(x ; r, z)=\frac{p}{r}(f(x+r z)-f(x)) z
$$

and

$$
\tilde{\mathrm{G}}_{f}^{(2)}(x ; r, z)=\frac{p}{2 r}(f(x+r z)-f(x-r z)) z
$$

where $z \sim \mathcal{Z}$ is again a random perturbation and \mathcal{Z} is usually either $\operatorname{Unif}\left(\mathbb{S}_{p-1}\right)$ or $\mathcal{N}\left(0, p^{-1} I\right)$. Since \mathcal{Z} is isotropic, we can see that both $\mathrm{G}_{f}^{(2)}(x ; r, z)$ and $\tilde{\mathrm{G}}_{f}^{(2)}(x ; r, z)$ have the same expectation as the single-point one, i.e.,

$$
\mathbb{E}_{z \sim \mathcal{Z}}\left[\mathrm{G}_{f}^{(2)}(x ; r, z)\right]=\mathbb{E}_{z \sim \mathcal{Z}}\left[\tilde{\mathrm{G}}_{f}^{(2)}(x ; r, z)\right]=\nabla f_{r}(x)
$$

On the other hand, the following lemma shows that their second-moments have better dependencies on the smoothing radius r.

Lemma 3. Suppose f is L-smooth, and let \mathcal{Z} be either $\mathcal{N}\left(0, p^{-1} I\right)$ or $\operatorname{Unif}\left(\mathbb{S}_{p-1}\right)$. Then

$$
\mathbb{E}_{z \sim \mathcal{Z}}\left[\left\|\mathrm{G}_{f}^{(2)}(x ; r, z)\right\|^{2}\right] \leq \begin{cases}2(p+2)\|\nabla f(x)\|^{2}+\frac{r^{2} L^{2} p^{2}}{2}\left(\frac{p+6}{p}\right)^{3}, & \mathcal{Z} \text { is } \mathcal{N}\left(0, p^{-1} I\right) \\ 2 p\|\nabla f(x)\|^{2}+\frac{r^{2} L^{2} p^{2}}{2}, & \mathcal{Z} \text { is } \operatorname{Unif}\left(\mathbb{S}_{p-1}\right)\end{cases}
$$

and the same bound holds for $\mathbb{E}_{z \sim \mathcal{Z}}\left[\left\|\tilde{\mathrm{G}}_{f}^{(2)}(x ; r, z)\right\|^{2}\right]$.
Proof. We only give a proof for $\mathrm{G}_{f}^{(2)}(x ; r, z)$.
We have

$$
\begin{align*}
& \mathbb{E}_{z}\left[\left\|\mathrm{G}_{f}^{(2)}(x ; r, z)\right\|^{2}\right]=\frac{p^{2}}{r^{2}} \mathbb{E}_{z}\left[|f(x+r z)-f(x)|^{2} \cdot\|z\|^{2}\right] \\
\leq & \frac{p^{2}}{r^{2}} \mathbb{E}_{z}\left[\left(2|f(x+r z)-f(x)-\langle\nabla f(x), r z\rangle|^{2}+2|\langle\nabla f(x), r z\rangle|^{2}\right)\|z\|^{2}\right] \\
= & \frac{2 p^{2}}{r^{2}} \mathbb{E}_{z}\left[|f(x+r z)-f(x)-\langle\nabla f(x), r z\rangle|^{2}\|z\|^{2}\right]+2 p^{2} \mathbb{E}_{z}\left[|\langle\nabla f(x), z\rangle|^{2}\|z\|^{2}\right] \tag{3}
\end{align*}
$$

First we consider the second term in (3). Note that

$$
\mathbb{E}_{z}\left[|\langle\nabla f(x), z\rangle|^{2} \cdot\|z\|^{2}\right]=(\nabla f(x))^{\top} \mathbb{E}_{z}\left[\|z\|^{2} z z^{\top}\right] \nabla f(x) .
$$

If \mathcal{Z} is the Gaussian distribution $\mathcal{N}\left(0, p^{-1} I\right)$, then

$$
\mathbb{E}_{z}\left[\|z\|^{2} z_{i} z_{j}\right]=\sum_{k=1}^{p} \mathbb{E}_{z}\left[z_{k}^{2} z_{i} z_{j}\right]= \begin{cases}\frac{p+2}{p^{2}}, & i=j \\ 0, & i \neq j\end{cases}
$$

where we used $\mathbb{E}_{z}\left[z_{i}^{4}\right]=3 / p^{2}$, and therefore

$$
\mathbb{E}_{z}\left[\|z\|^{2} z z^{\top}\right]=\frac{p+2}{p^{2}} I
$$

If \mathcal{Z} is $\operatorname{Unif}\left(\mathbb{S}_{p-1}\right)$, then

$$
\mathbb{E}_{z}\left[\|z\|^{2} z z^{\top}\right]=\mathbb{E}_{z}\left[z z^{\top}\right]=\frac{1}{p} I
$$

where we used $\mathbb{E}_{z}\left[z_{i} z_{j}\right]=0$ for $i=j$ by the symmetry of \mathcal{Z}. Therefore

$$
2 p^{2} \mathbb{E}_{z}\left[|\langle\nabla f(x), z\rangle|^{2} \cdot\|z\|^{2}\right]= \begin{cases}2(p+2)\|\nabla f(x)\|^{2}, & \mathcal{Z} \text { is } \mathcal{N}\left(0, p^{-1} I\right) \\ 2 p\|\nabla f(x)\|^{2}, & \mathcal{Z} \text { is Unif }\left(\mathbb{S}_{p-1}\right)\end{cases}
$$

Next we bound the first term. By Newton-Leibniz theorem,

$$
f(x+r z)-f(x)=\int_{0}^{r}\langle\nabla f(x+t z), z\rangle d t
$$

and thus

$$
\begin{aligned}
|f(x+r z)-f(x)-\langle\nabla f(x), r z\rangle| & =\left|\int_{0}^{r}\langle\nabla f(x+t z)-\nabla f(x), z\rangle d t\right| \\
& \leq \int_{0}^{r}\|\nabla f(x+t z)-\nabla f(x)\|\|z\| d t \\
& \leq \int_{0}^{r} L t\|z\|^{2} d t=\frac{L r^{2}}{2}\|z\|^{2}
\end{aligned}
$$

We then get

$$
\begin{aligned}
& \frac{2 p^{2}}{r^{2}} \mathbb{E}_{z}\left[|f(x+r z)-f(x)-\langle f(x), r z\rangle|^{2}\|z\|^{2}\right] \\
\leq & \frac{2 p^{2}}{r^{2}} \mathbb{E}_{z}\left[\frac{L^{2} r^{4}}{4}\|z\|^{6}\right] \leq \begin{cases}\left(\frac{p+6}{p}\right)^{3} \frac{r^{2} L^{2} p^{2}}{2}, & \mathcal{Z} \text { is } \mathcal{N}\left(0, p^{-1} I\right) \\
\frac{r^{2} L^{2} p^{2}}{2}, & \mathcal{Z} \text { is } \operatorname{Unif}\left(\mathbb{S}_{p-1}\right),\end{cases}
\end{aligned}
$$

where we used $\mathbb{E}_{z}\left[\|z\|^{6}\right] \leq(p+6)^{3} / p^{3}$ for $z \sim \mathcal{N}\left(0, p^{-1} I\right)$.
Lemma 3 shows that the second-moment of either of the two-point gradient estimators does not blow up as $r \rightarrow 0,{ }^{1}$ and thus achieves much smaller variance compared to the single-point gradient estimator for small r.

[^0]
4 Convergence Analysis for Zeroth-Order Optimization

We now turn our focus to convergence analysis of zeroth-order optimization method, and study the following iteration as an example:

$$
\begin{equation*}
x_{k+1}=x_{k}-\alpha \mathrm{G}_{f}^{(2)}\left(x_{k} ; r_{k}, z_{k}\right) \tag{4}
\end{equation*}
$$

i.e., we plug the two-point gradient estimator $G_{f}^{(2)}$ into the stochastic gradient descent iteration. Here each z_{k} is independently drawn from the distribution \mathcal{Z}, and r_{k} is a positive sequence of smoothing radii that vary with k. We let \mathcal{Z} be $\operatorname{Unif}\left(\mathbb{S}_{p-1}\right)$ for simplicity. We assume that f is convex and L-smooth and has a minimizer $x \in \mathbb{R}^{p}$.

Let \mathcal{F}_{k} denote the filtration generated by $\left(x_{1}, \ldots, x_{k}\right)$. Our convergence analysis starts by expanding $\left\|x_{k+1}-x^{*}\right\|^{2}$:

$$
\begin{aligned}
\left\|x_{k+1}-x^{*}\right\|^{2} & =\left\|x_{k}-x^{*}-\alpha \mathrm{G}_{f}^{(2)}\left(x_{k} ; r_{k}, z_{k}\right)\right\|^{2} \\
& =\left\|x_{k}-x^{*}\right\|^{2}-2 \alpha\left\langle x_{k}-x^{*}, \mathrm{G}_{f}^{(2)}\left(x_{k} ; r_{k}, z_{k}\right)\right\rangle+\alpha^{2}\left\|\mathrm{G}_{f}^{(2)}\left(x_{k} ; r_{k}, z_{k}\right)\right\|^{2} .
\end{aligned}
$$

By taking the expectation conditioned on \mathcal{F}_{k} and using Lemma 1 and Lemma 3, we get

$$
\begin{gathered}
\mathbb{E}\left[\left\langle x_{k}-x^{*}, \mathrm{G}_{f}^{(2)}\left(x_{k} ; r_{k}, z_{k}\right)\right\rangle \mid \mathcal{F}_{k}\right]=\left\langle x_{k}-x^{*}, \nabla f_{r_{k}}\left(x_{k}\right)\right\rangle, \\
\mathbb{E}\left[\left\|\mathrm{G}_{f}^{(2)}\left(x_{k} ; r_{k}, z_{k}\right)\right\|^{2} \mid \mathcal{F}_{k}\right] \leq 2 p\left\|\nabla f\left(x_{k}\right)\right\|^{2}+\frac{r_{k}^{2} L^{2} p^{2}}{2},
\end{gathered}
$$

and consequently

$$
\mathbb{E}\left[\left\|x_{k+1}-x^{*}\right\|^{2} \mid \mathcal{F}_{k}\right] \leq\left\|x_{k}-x^{*}\right\|^{2}-2 \alpha\left\langle x_{k}-x^{*}, \nabla f_{r_{k}}\left(x_{k}\right)\right\rangle+2 \alpha^{2} p\left\|\nabla f\left(x_{k}\right)\right\|^{2}+\frac{\alpha^{2} r_{k}^{2} L^{2} p^{2}}{2}
$$

Since $f_{r_{k}}$ is convex, we see that

$$
f_{r_{k}}\left(x^{*}\right)-f_{r_{k}}\left(x_{k}\right) \geq\left\langle\nabla f_{r}\left(x_{k}\right), x^{*}-x_{k}\right\rangle,
$$

and by Lemma 2, we further have

$$
-\left\langle\nabla f_{r_{k}}\left(x_{k}\right), x_{k}-x^{*}\right\rangle \leq f_{r_{k}}\left(x^{*}\right)-f_{r_{k}}\left(x_{k}\right) \leq f\left(x^{*}\right)-f\left(x_{k}\right)+\frac{L r_{k}^{2}}{2}
$$

Moreover, since f is L-smooth and $\nabla f\left(x^{*}\right)=0$, we have

$$
\left\|\nabla f\left(x_{k}\right)\right\|^{2}=\left\|\nabla f\left(x_{k}\right)-\nabla f\left(x^{*}\right)\right\|^{2} \leq 2 L\left(f\left(x_{k}\right)-f\left(x^{*}\right)\right)
$$

Summarizing these results, we get

$$
\mathbb{E}\left[\left\|x_{k+1}-x^{*}\right\|^{2} \mid \mathcal{F}_{k}\right] \leq\left\|x_{k}-x^{*}\right\|^{2}-2 \alpha(1-2 \alpha p L)\left(f\left(x_{k}\right)-f\left(x^{*}\right)\right)+\alpha L r_{k}^{2}+\frac{\alpha^{2} r_{k}^{2} L^{2} p^{2}}{2}
$$

and by taking the total expectation, we can get

$$
2 \alpha(1-2 \alpha p L) \mathbb{E}\left[f\left(x_{k}\right)-f\left(x^{*}\right)\right] \leq \mathbb{E}\left[\left\|x_{k}-x^{*}\right\|^{2}\right]-\mathbb{E}\left[\left\|x_{k+1}-x^{*}\right\|^{2}\right]+\alpha L r_{k}^{2}+\frac{\alpha^{2} r_{k}^{2} L^{2} p^{2}}{2}
$$

Now we take the telescoping sum and get

$$
2 \alpha(1-2 \alpha p L) \sum_{k=0}^{K} \mathbb{E}\left[f\left(x_{k}\right)-f\left(x^{*}\right)\right] \leq\left\|x_{0}-x^{*}\right\|^{2}+\alpha L\left(1+\frac{\alpha L p^{2}}{2}\right) \sum_{k=0}^{K} r_{k}^{2}
$$

By taking $\alpha=c /(2 p L)$ for some $c \in(0,1)$, we get

$$
\frac{1}{K+1} \sum_{k=0}^{K} \mathbb{E}\left[f\left(x_{k}\right)-f\left(x^{*}\right)\right] \leq \frac{p L\left\|x_{0}-x^{*}\right\|^{2}}{c(1-c)(K+1)}+\frac{L}{2(1-c)}\left(1+\frac{c p}{4}\right) \frac{\sum_{k=0}^{K} r_{k}^{2}}{K+1}
$$

which further implies

$$
\mathbb{E}\left[\min _{0 \leq k \leq K} f\left(x_{k}\right)-f\left(x^{*}\right)\right] \leq \frac{p L\left\|x_{0}-x^{*}\right\|^{2}}{c(1-c)(K+1)}+\frac{L}{2(1-c)}\left(1+\frac{c p}{4}\right) \frac{\sum_{k=0}^{K} r_{k}^{2}}{K+1}
$$

The following theorem summarizes the convergence analysis of the iteration (4) for the smooth and convex setting.
Theorem 2. Suppose f is convex and L-smooth, and has a minimizer $x \in \mathbb{R}^{p}$. Let $\alpha=c /(p L)$ for some $c \in(0,1)$, and let r_{k} be a positive sequence of smoothing radii such that $\sum_{k=0}^{K} r_{k}^{2}=R^{2}<+\infty$. Then the zeroth-order optimization iteration (4) achieves

$$
\mathbb{E}\left[\min _{0 \leq k \leq K} f\left(x_{k}\right)-f\left(x^{*}\right)\right] \leq \frac{p}{K+1}\left(\frac{L\left\|x_{0}-x^{*}\right\|^{2}}{c(1-c)}+\frac{R^{2} L(c+4 / p)}{8(1-c)}\right)
$$

Corollary 2. Let $\epsilon>0$ be arbitrary. Then, under the conditions of Theorem (2), the number of zeroth-order queries needed to achieve

$$
\mathbb{E}\left[\min _{0 \leq k \leq K} f\left(x_{k}\right)-f\left(x^{*}\right)\right] \leq \epsilon
$$

is bounded by

$$
2(K+1)=O\left(\frac{p}{\epsilon}\right)
$$

Remark 1. For smooth constrained convex optimization, the best convergence rate established so far seems to be $O(\sqrt{p / K})$ (or $O\left(p / \epsilon^{2}\right)$ in terms of iteration complexity), which is worse than the unconstrained case. This is different from first-order methods where projected gradient descent can still achieve $O(1 / K)$ convergence rate for smooth constrained convex objectives.

4.1 Convergence Analysis for Smooth and Strongly Convex f

Theorem 3. Suppose f is m-strongly convex and L-smooth, and has a minimizer $x^{*} \in \mathbb{R}^{p}$. Let $\alpha=c /(p L)$ for some $c \in(0,1)$. Then the zeroth-order optimization iteration (4) achieves

$$
\mathbb{E}\left[\left\|x_{k}-x^{*}\right\|^{2}\right] \leq \rho^{k}\left\|x_{0}-x^{*}\right\|^{2}+\frac{c(c+4 / p)}{8} \sum_{\tau=0}^{k-1} \rho^{\tau} r_{k-1-\tau}^{2},
$$

where

$$
\rho=1-\frac{c(1-c) m}{2 p L} .
$$

Proof. Much of the derivation for the smooth and convex setting can be applied here, and we have

$$
\mathbb{E}\left[\left\|x_{k+1}-x^{*}\right\|^{2} \mid \mathcal{F}_{k}\right] \leq\left\|x_{k}-x^{*}\right\|^{2}-2 \alpha(1-2 \alpha p L)\left(f\left(x_{k}\right)-f\left(x^{*}\right)\right)+\alpha L r_{k}^{2}+\frac{\alpha^{2} r_{k}^{2} L^{2} p^{2}}{2}
$$

Now since f is m-strongly convex, we have

$$
f\left(x_{k}\right)-f\left(x^{*}\right) \geq\left\langle\nabla f\left(x^{*}\right), x_{k}-x^{*}\right\rangle+\frac{m}{2}\left\|x_{k}-x^{*}\right\|^{2}=\frac{m}{2}\left\|x_{k}-x^{*}\right\|^{2}
$$

Since $1-2 \alpha p L>0$, we see that

$$
\mathbb{E}\left[\left\|x_{k+1}-x^{*}\right\|^{2} \mid \mathcal{F}_{k}\right] \leq(1-\alpha m(1-2 \alpha p L))\left\|x_{k}-x^{*}\right\|^{2}+\alpha L\left(1+\frac{\alpha L p^{2}}{2}\right) r_{k}^{2}
$$

By plugging in $\alpha=c /(2 p L)$ and taking the total expectation, we get

$$
\mathbb{E}\left[\left\|x_{k+1}-x^{*}\right\|^{2}\right] \leq\left(1-\frac{c(1-c) m}{2 p L}\right) \mathbb{E}\left[\left\|x_{k}-x^{*}\right\|^{2}\right]+\frac{c(c+4 / p)}{8} r_{k}^{2}
$$

The final bound can then be shown by mathematical induction.

5 Notes and References

The main reference for this lecture is [1], which also considers nonsmooth convex optimization and nonconvex optimization problems. Some other related references on zeroth-order gradient estimation methods include:

- [2] considers constrained nonsmooth online convex optimization where only one function evaluation is available for the objective function at each time instant. The paper provides basic properties of the single-point gradient estimator.
- [3] considers unconstrained stochastic optimization where two function evaluations are available for each random sample, and employs the two-point gradient estimator $\mathrm{G}_{f}^{(2)}$. Convergence analysis is provided for both convex and nonconvex settings with smooth objectives.
- [4] considers constrained stochastic convex optimization where two function evaluations are available for each random sample, and combines two-point gradient estimators with the stochastic mirror descent method. It also establishes information-theoretic lower bounds on the optimal convergence rate.
- [5] considers constrained online convex optimization where two function evaluations are available for the objective function at each time instant. The paper employs $\tilde{\mathrm{G}}_{f}^{(2)}$ for handling convex but nonsmooth objectives, and shows that the proposed algorithm achieves the optimal convergence rate.
- [6] proposes the residual feedback method for reducing the variance of one-point gradient estimator:

$$
x_{k+1}=x_{k}-\alpha \cdot \frac{p}{r}\left(f\left(x_{k}+r z_{k}\right)-f\left(x_{k-1}+r z_{k-1}\right)\right) z_{k}
$$

This method improves on the convergence rate compared to the vanilla single-point gradient estimation method. [7] studies accelerating single-point zeroth-order methods and derive the residual feedback method from the perspective of extreme seeking control.

- [8] provides a zeroth-order stochastic coordinate descent method, in which the two-point gradient estimator $\tilde{\mathrm{G}}_{f}^{(2)}$ is employed, and the distribution \mathcal{Z} is the uniform distribution on the standard basis $\left\{e_{i}\right\}_{i=1}^{p}$ of \mathbb{R}^{p}. The paper also considers the setting of asynchronous parallel optimization.

The paper [9] provides a recent survey of literature on zeroth-order optimization methods.

A Proof of Lemma 1

\mathcal{Z} is $\mathcal{N}\left(0, p^{-1} I\right)$. In this case, we have

$$
\begin{aligned}
f_{r}(x) & =\frac{1}{(2 \pi / p)^{p / 2}} \int_{\mathbb{R}^{p}} f(x+r y) \exp \left(-\frac{p\|y\|^{2}}{2}\right) d y \\
& =\frac{1}{(2 \pi / p)^{p / 2}} \int_{\mathbb{R}^{p}} f(u) \exp \left(-\frac{p\|u-x\|^{2}}{2 r^{2}}\right) \frac{1}{r^{p}} d u
\end{aligned}
$$

where in the second equality we substituted $u=x+r y$. We can then calculate the gradient of $f_{r}(x)$ by

$$
\begin{aligned}
\nabla f_{r}(x) & =\nabla_{x}\left(\frac{1}{(2 \pi / p)^{p / 2}} \int_{\mathbb{R}^{p}} f(u) \exp \left(-\frac{p\|u-x\|^{2}}{2 r^{2}}\right) \frac{1}{r^{p}} d u\right) \\
& =\frac{1}{(2 \pi / p)^{p / 2}} \int_{\mathbb{R}^{p}} f(u) \nabla_{x}\left(\exp \left(-\frac{p\|u-x\|^{2}}{2 r^{2}}\right)\right) \frac{1}{r^{p}} d u \\
& =\frac{1}{(2 \pi / p)^{p / 2}} \int_{\mathbb{R}^{p}} f(u) \exp \left(-\frac{p\|u-x\|^{2}}{2 r^{2}}\right) \cdot \frac{p(x-u)}{r^{2}} \frac{1}{r^{p}} d u \\
& =\frac{1}{(2 \pi / p)^{p / 2}} \int_{\mathbb{R}^{p}} \frac{p}{r} f(x+r z) z \cdot \exp \left(-\frac{p\|z\|^{2}}{2}\right) d z=\mathbb{E}_{z \sim \mathcal{Z}}\left[\frac{p}{r} f(x+r z) z\right]
\end{aligned}
$$

where in the second step we interchange differentiation and integration.
\mathcal{Z} is $\operatorname{Unif}\left(\mathbb{S}_{p-1}\right)$. Let V_{p} denote the p-dimensional volume of \mathbb{B}_{p}, and let S_{p-1} denote the surface area (or $(p-1)$-dimensional volume) of \mathbb{S}_{p-1}. Then for any $v \in \mathbb{R}^{p}$, we have

$$
\begin{aligned}
v \cdot \nabla f_{r}(x) & =v \cdot \nabla_{x}\left(\frac{1}{V_{p}} \int_{\mathbb{B}_{p}} f(x+r y) d y\right) \\
& =\frac{1}{V_{p}} \int_{\mathbb{B}_{p}} v \cdot \nabla_{x} f(x+r y) d y \\
& =\frac{1}{V_{p}} \int_{\mathbb{B}_{p}} \frac{1}{r} \nabla_{z} \cdot(f(x+r z) v) d z \\
& =\frac{1}{r V_{p}} \int_{\mathbb{S}_{p-1}} f(x+r z) v \cdot z d \Sigma(z) \\
& =v \cdot\left(\frac{p}{r} \frac{1}{S_{p-1}} \int_{\mathbb{S}_{p-1}} f(x+r z) z d \Sigma(z)\right)=v \cdot \mathbb{E}_{z \sim \mathcal{Z}}\left[\frac{p}{r} f(x+r z) z\right]
\end{aligned}
$$

Here in the fourth step, we used Gauss's divergence theorem and the fact that the unit normal vector at z on \mathbb{S}_{p-1} is just z, and we use $d \Sigma(z)$ to denote the surface element of \mathbb{S}_{p-1} at z; in the fifth step we used $S_{p-1}=p V_{p}$. By the arbitrariness of v we get the desired result.

References

[1] Y. Nesterov and V. Spokoiny, "Random gradient-free minimization of convex functions," Foundations of Computational Mathematics, vol. 17, no. 2, pp. 527-566, 2017.
[2] A. D. Flaxman, A. T. Kalai, and H. B. McMahan, "Online convex optimization in the bandit setting: gradient descent without a gradient," in Proceedings of the Sixteenth Annual ACMSIAM Symposium on Discrete Algorithms, pp. 385-394, 2005.
[3] S. Ghadimi and G. Lan, "Stochastic first-and zeroth-order methods for nonconvex stochastic programming," SIAM Journal on Optimization, vol. 23, no. 4, pp. 2341-2368, 2013.
[4] J. C. Duchi, M. I. Jordan, M. J. Wainwright, and A. Wibisono, "Optimal rates for zero-order convex optimization: The power of two function evaluations," IEEE Transactions on Information Theory, vol. 61, no. 5, pp. 2788-2806, 2015.
[5] O. Shamir, "An optimal algorithm for bandit and zero-order convex optimization with two-point feedback," The Journal of Machine Learning Research, vol. 18, no. 1, pp. 1703-1713, 2017.
[6] Y. Zhang, Y. Zhou, K. Ji, and M. M. Zavlanos, "A new one-point residual-feedback oracle for black-box learning and control," Automatica, vol. 136, p. 110006, 2022.
[7] X. Chen, Y. Tang, and N. Li, "Improve single-point zeroth-order optimization using high-pass and low-pass filters from extremum seeking control," arXiv preprint arXiv:2111.01701, 2021.
[8] X. Lian, H. Zhang, C.-J. Hsieh, Y. Huang, and J. Liu, "A comprehensive linear speedup analysis for asynchronous stochastic parallel optimization from zeroth-order to first-order," in Advances in Neural Information Processing Systems (D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, eds.), vol. 29, Curran Associates, Inc., 2016.
[9] S. Liu, P.-Y. Chen, B. Kailkhura, G. Zhang, A. O. Hero III, and P. K. Varshney, "A primer on zeroth-order optimization in signal processing and machine learning: Principals, recent advances, and applications," IEEE Signal Processing Magazine, vol. 37, no. 5, pp. 43-54, 2020.

[^0]: ${ }^{1}$ For practical numerical computation, however, r cannot be arbitrarily small due to machine precision.

