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Linear Quadratic Gaussian Control

v(t) Gaussian white w(t)
Observation noisel 1Process noise

Observation y(t) u(t) Control input
1 2(t) = Az(t) + Bu(t) + w(t) =

------------- - 7
R | .
minimize  lim - /O(a:(t) Qz(t) + u(t) Ru(t))dt
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Linear Quadratic Gaussian Control

A classical control problem, rich theory in classical control
Allows partial observation of the state

* Perfect state observation is often not available
- Wider range of applications than LQR

Existing works on RL for partially observed LQ control mostly focus on
model-based methods

[Tu 2017] [Boczar 2018] [Simchowitz 2020] [Zheng 2021]

Model-free RL for LQG is substantially challenging
[Venkataraman 2019]

Lack of understanding of LQG’s optimization landscape
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Optimization Landscape of LQR

Perfect state
observation

Gaussian white w(t)

Kx(t) Plant
| &(t) = Az(t) + Bu(t) + w(t)

=

o u(t) 9K xz(t)

1 T
min lim —E/ (J?TQQZ—I—’LLTR’LL)dt
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Optimization Landscape of LQR

,ll. IC f(K)A
LQR cost ~— J
.’, ’’’’’’’ y
mén F(K) Open, connected, Unique stationary point,
st Kek possibly nonconvex coercive, gradient dominance

v Fast convergence to
Set of stabilizing

feedback gains global optimum for

gradient-based methods

[Fazel 2018] [Malik 2019] [Mohammadi 2019] [Bu 2021]
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Optimization Landscape of LQG

= Landscape of LQG is fundamental for model-free RL of LQG

= Extension from LQR to LQG is highly nontrivial
« Classical LQG control theory is more sophisticated
« Some results of LQR may not hold for LQG anymore

« The domain consists of dynamic controllers, leading to more complex
landscape structure
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£(t) = Ak f,gt) + Bk y(t)
u(t) = Cx &(t)

£(t) internal state of the controller

dim£(¢) order of the controller

dim{(t) = dimz(¢) full-order
u(t) J dim§(t) < dimz(f) reduced-order

dynamic controller minimal controller

The input-output behavior cannot be
replicated by a lower order controller.

* (Ak, Bk, Ck) controllable and observable
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LQG as an Optimization Problem

Gaussian white

u(t)  w(?) min J(K)
u(t) S.t. K:(AK,BK,CK) € Crull
Plant [«

Objective: J(K) The LQG cost
1

- TT T
) = Ak &(t) + Bk y(t) TIEHOOTE/O (@ Quu’ Ru)dt

Domain: Cs The set of full-order, stabilizing
dynamic controllers

open, unbounded and nonconvex
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LQG as an Optimization Problem

Gaussian white

u(t)  w(?) min J(K)
y(t) u(t) s.t. K= (Ak, Bk, Ck) € Cu
Plant [

= Connectivity of the domain Cgy

* |Is it connected?

L §(t) = Ax£(t) + Bry(t) « If not, how many connected components can it have?

= Structure of stationary points of J(K)
» Are there spurious (strictly suboptimal) stationary points?

 How to check if a stationary point is globally optimal?
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Connectivity of the Domain

Theorem 1. Under some standard assumptions,

1) The set Cru1 can be disconnected, but has at most 2 connected components.
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Connectivity of the Domain

Theorem 1. Under some standard assumptions,

1) The set Cru1 can be disconnected, but has at most 2 connected components.

2)

If Cra1 has 2 connected components, then there is a smooth bijection T
between the 2 connected components that does not change the value of J(K).

For gradient-based local search methods,
it makes no difference to search over either
connected component.
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Connectivity of the Domain

Theorem 2. Under some standard assumptions,

1) Cran is connected if the plant is open-loop stable or there exists a reduced-
order stabilizing controller.

2) The sufficient condition of connectivity in 1) becomes necessary if the plant is
single-input or single-output.

Example 1. @(t) = —z(t) +u(t) +w(t) =(t) €R

« open-loop stable
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Connectivity of the Domain

Theorem 2. Under some standard assumptions,

1) Cru is connected if the plant is open-loop stable or there exists a reduced-
order stabilizing controller.

2) The sufficient condition of connectivity in 1) becomes necessary if the plant is
single-input or single-output.
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Example 2. (1)

 not open-loop stable
* no reduced-order stabilizing controller
* single-input single-output
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LQG as an Optimization Problem

min J(K)

s.t.  K=(Ak, Bk, Ck) € Ctun

= Connectivity of the domain Cgy
* Is it connected? Not necessarily.

* If not, how many connected components can it have? Two.
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LQG as an Optimization Problem

min J(K)

s.t.  K=(Ak, Bk, Ck) € Ctun

= Structure of stationary points of J(K)
» Are there spurious (strictly suboptimal) stationary points?

 How to check if a stationary point is globally optimal?
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Facts.

1)
2)

Structure of Stationary Points

J(K) has non-unique and non-isolated global optima

J(K) may have spurious stationary points
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Structure of Stationary Points

Theorem 3. Suppose there exists a stationary point that is a minimal controller. Then

1) This stationary point is a global optimum of J(K)
2) The set of all global optima forms a manifold with 2 connected components.

Example 1 Example 2
() = 2(t) +u(t) +w(t) W
y(t)=xz(t)+v(t) 3
S 2
z(t) € R 1
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Structure of Stationary

Implication. 10
Consider gradient descent iterations L0-2
Kt—l—l = Kt — (XVJ(Kt) § E

If the iterates converge to a minimal g

controller, then this minimal controller is a

global optimum. 10—6;

* How to check if a controller is minimal?
» Check its controllability and observability.
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Summary

min J(K)
LQG as an optimization problem K
S.t. K:(AK,BK,CK) € Crunl

Connectivity of domain Stationary points

“» At most two connected components “* Non-unique global optima,

% The two connected components SPUARLE SuEllelEly [elE

mirror each other < Minimal stationary points are

< Conditions for being connected globally optimal

More results are presented in arXiv:2102.04393.
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Future Directions

A comprehensive classification of stationary points

Conditions for existence of minimal globally optimal controllers

Saddle points with vanishing Hessians may exist. How to deal with them?
Alternative model-free parametrization of dynamic controllers
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