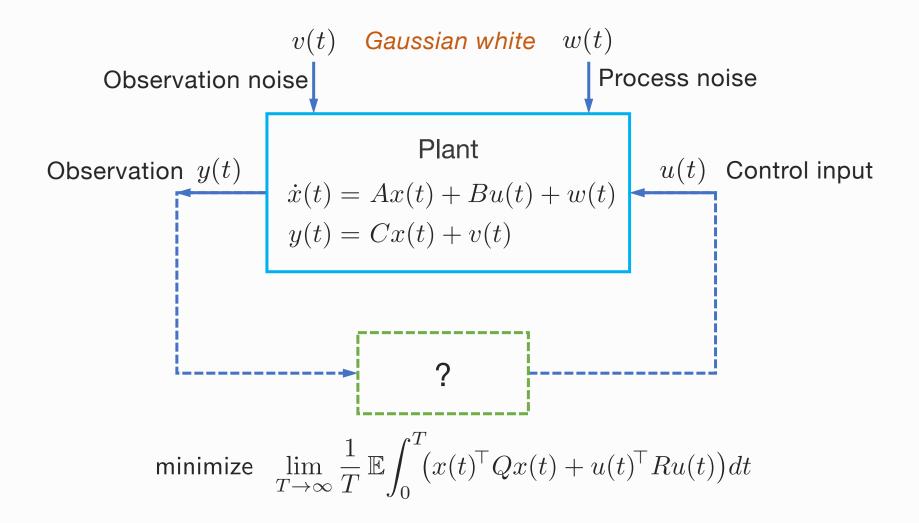
Analysis of the Optimization Landscape of Linear Quadratic Gaussian Control

Yujie Tang, Yang Zheng and Na Li

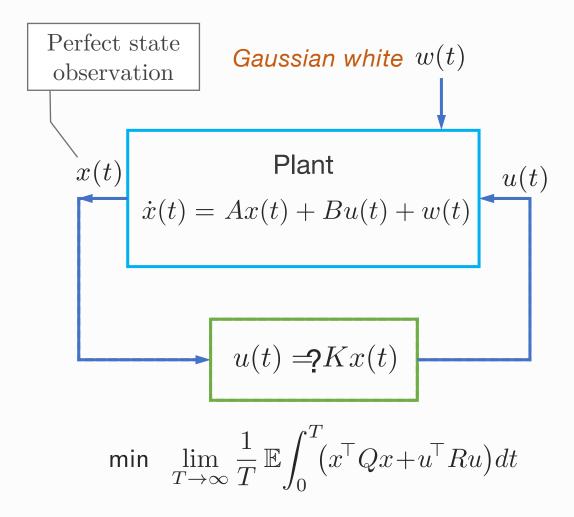
Linear Quadratic Gaussian Control



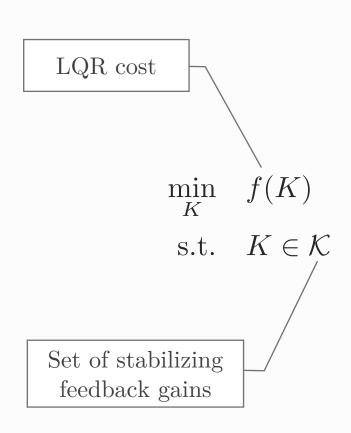
Linear Quadratic Gaussian Control

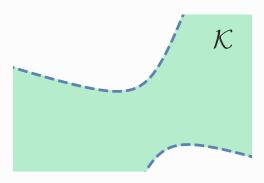
- A classical control problem, rich theory in classical control
- Allows partial observation of the state
 - Perfect state observation is often not available
 - Wider range of applications than LQR
- Existing works on RL for partially observed LQ control mostly focus on model-based methods
 - [Tu 2017] [Boczar 2018] [Simchowitz 2020] [Zheng 2021]
- Model-free RL for LQG is substantially challenging
 - [Venkataraman 2019]
- Lack of understanding of LQG's optimization landscape

Optimization Landscape of LQR

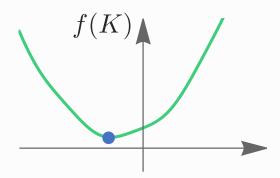


Optimization Landscape of LQR

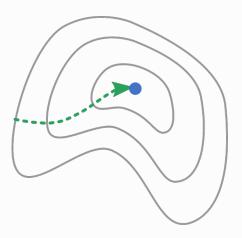




Open, connected, possibly nonconvex



Unique stationary point, coercive, gradient dominance

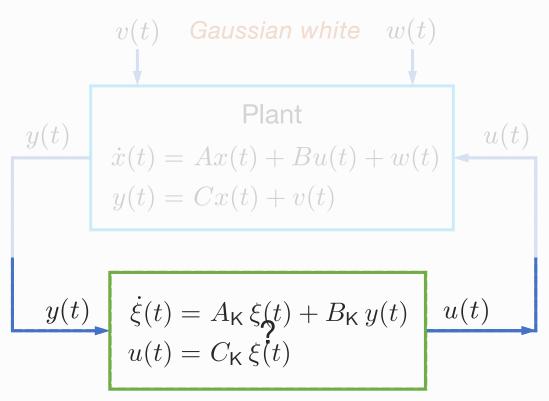


✓ Fast convergence to global optimum for gradient-based methods

[Fazel 2018] [Malik 2019] [Mohammadi 2019] [Bu 2021]

Optimization Landscape of LQG

- Landscape of LQG is fundamental for model-free RL of LQG
- Extension from LQR to LQG is highly nontrivial
 - Classical LQG control theory is more sophisticated
 - Some results of LQR may not hold for LQG anymore
 - The domain consists of dynamic controllers, leading to more complex landscape structure



dynamic controller

 $\xi(t)$ internal state of the controller

 $\dim \xi(t)$ order of the controller

$$\dim \xi(t) = \dim x(t)$$
 full-order

$$\dim \xi(t) < \dim x(t)$$
 reduced-order

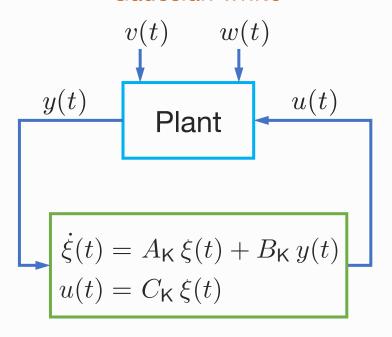
minimal controller

The input-output behavior cannot be replicated by a lower order controller.

* $(A_{\mathsf{K}}, B_{\mathsf{K}}, C_{\mathsf{K}})$ controllable and observable

LQG as an Optimization Problem

Gaussian white



$$\min_{\mathsf{K}} J(\mathsf{K})$$
s.t. $\mathsf{K} = (A_{\mathsf{K}}, B_{\mathsf{K}}, C_{\mathsf{K}}) \in \mathcal{C}_{\text{full}}$

Objective: $J(\mathbf{K})$ The LQG cost

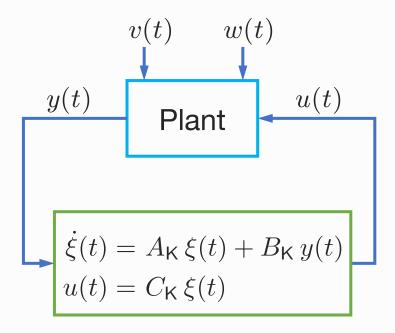
$$\lim_{T \to \infty} \frac{1}{T} \mathbb{E} \int_0^\infty (x^\top Q x + u^\top R u) dt$$

Domain: $\mathcal{C}_{\mathrm{full}}$ The set of full-order, stabilizing dynamic controllers

open, unbounded and nonconvex

LQG as an Optimization Problem

Gaussian white

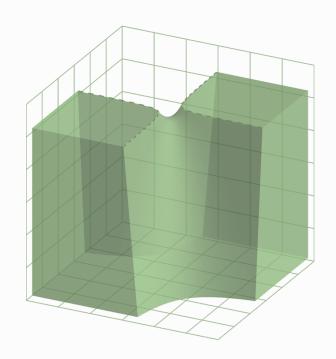


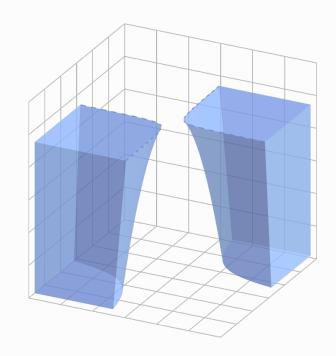
$$\min_{\mathsf{K}} J(\mathsf{K})$$
s.t. $\mathsf{K} = (A_{\mathsf{K}}, B_{\mathsf{K}}, C_{\mathsf{K}}) \in \mathcal{C}_{\text{full}}$

- lacktriangle Connectivity of the domain $\mathcal{C}_{\mathrm{full}}$
 - Is it connected?
 - If not, how many connected components can it have?
- Structure of stationary points of J(K)
 - Are there spurious (strictly suboptimal) stationary points?
 - How to check if a stationary point is globally optimal?

Theorem 1. Under some standard assumptions,

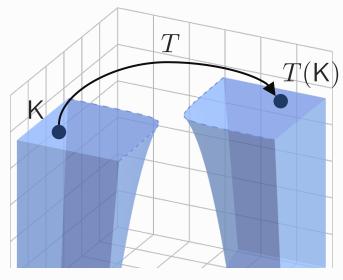
1) The set $\mathcal{C}_{\mathrm{full}}$ can be disconnected, but has at most 2 connected components.





Theorem 1. Under some standard assumptions,

- 1) The set $\mathcal{C}_{\mathrm{full}}$ can be disconnected, but has at most 2 connected components.
- 2) If C_{full} has 2 connected components, then there is a smooth bijection T between the 2 connected components that does not change the value of $J(\mathsf{K})$.

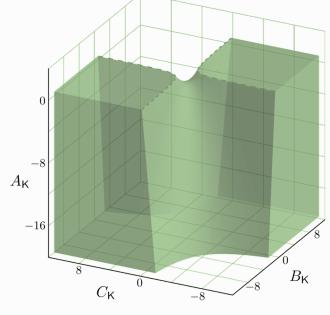


$$J(\mathsf{K}) = J(T(\mathsf{K}))$$

For gradient-based local search methods, it makes no difference to search over either connected component.

Theorem 2. Under some standard assumptions,

- 1) $\mathcal{C}_{\mathrm{full}}$ is connected if the plant is open-loop stable or there exists a reduced-order stabilizing controller.
- 2) The sufficient condition of connectivity in 1) becomes necessary if the plant is single-input or single-output.
- **Example 1.** $\dot{x}(t) = -x(t) + u(t) + w(t)$ $x(t) \in \mathbb{R}$ y(t) = x(t) + v(t)
 - open-loop stable

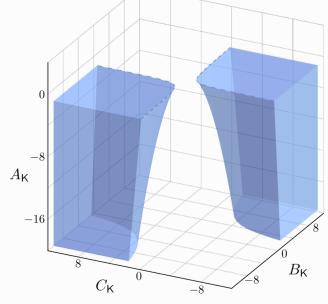


Theorem 2. Under some standard assumptions,

- 1) $\mathcal{C}_{\mathrm{full}}$ is connected if the plant is open-loop stable or there exists a reduced-order stabilizing controller.
- 2) The sufficient condition of connectivity in 1) becomes necessary if the plant is single-input or single-output.

Example 2.
$$\dot{x}(t) = x(t) + u(t) + w(t)$$
 $x(t) \in \mathbb{R}$ $y(t) = x(t) + v(t)$

- not open-loop stable
- no reduced-order stabilizing controller
- single-input single-output



LQG as an Optimization Problem

$$\min_{\mathsf{K}} J(\mathsf{K})$$
s.t. $\mathsf{K} = (A_{\mathsf{K}}, B_{\mathsf{K}}, C_{\mathsf{K}}) \in \mathcal{C}_{\text{full}}$

- Connectivity of the domain $\mathcal{C}_{\mathrm{full}}$
 - Is it connected? Not necessarily.
 - If not, how many connected components can it have? Two.
- Structure of stationary points of J(K)
 - Are there spurious (strictly suboptimal) stationary points?
 - How to check if a stationary point is globally optimal?

LQG as an Optimization Problem

$$\min_{\mathsf{K}} J(\mathsf{K})$$
s.t. $\mathsf{K} = (A_{\mathsf{K}}, B_{\mathsf{K}}, C_{\mathsf{K}}) \in \mathcal{C}_{\text{full}}$

- Connectivity of the domain $\mathcal{C}_{\mathrm{full}}$
 - Is it connected? Not necessarily.
 - If not, how many connected components can it have? Two.
- Structure of stationary points of J(K)
 - Are there spurious (strictly suboptimal) stationary points?
 - How to check if a stationary point is globally optimal?

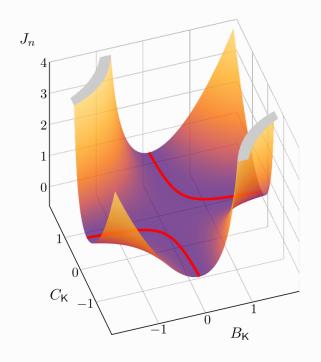
Structure of Stationary Points

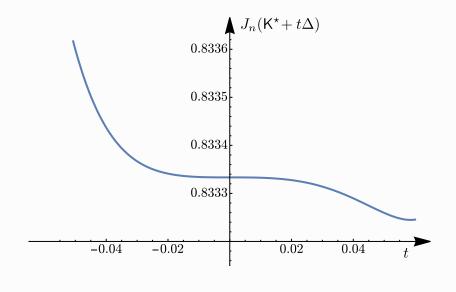
Facts.

1) J(K) has **non-unique** and **non-isolated** global optima

2) J(K) may have **spurious** stationary points

Contrary to LQR

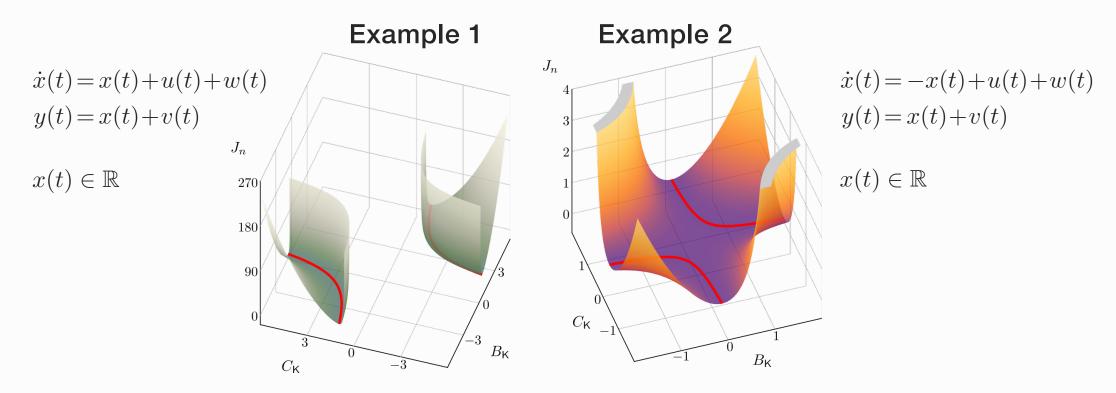




Structure of Stationary Points

Theorem 3. Suppose there exists a stationary point that is a **minimal** controller. Then

- 1) This stationary point is a global optimum of $J(\mathsf{K})$
- 2) The set of all global optima forms a manifold with 2 connected components.



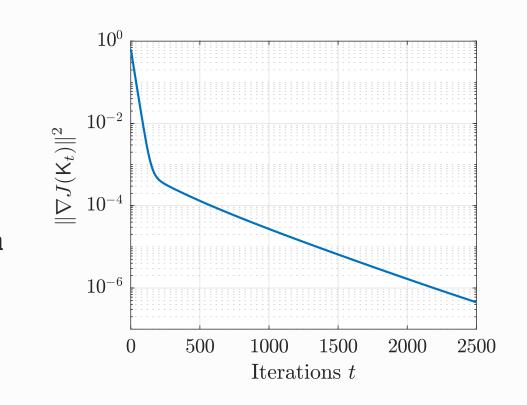
Structure of Stationary Points

Implication.

Consider gradient descent iterations

$$\mathsf{K}_{t+1} = \mathsf{K}_t - \alpha \nabla J(\mathsf{K}_t)$$

If the iterates converge to a minimal controller, then this minimal controller is a global optimum.



Check its controllability and observability.

^{*} How to check if a controller is minimal?

Summary

LQG as an optimization problem

$$\min_{\mathsf{K}} J(\mathsf{K})$$
s.t. $\mathsf{K} = (A_{\mathsf{K}}, B_{\mathsf{K}}, C_{\mathsf{K}}) \in \mathcal{C}_{\text{full}}$

Connectivity of domain

- At most two connected components
- The two connected components mirror each other
- Conditions for being connected

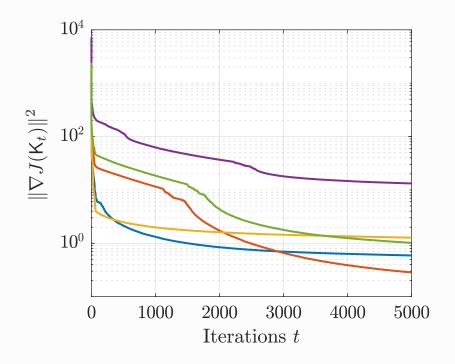
Stationary points

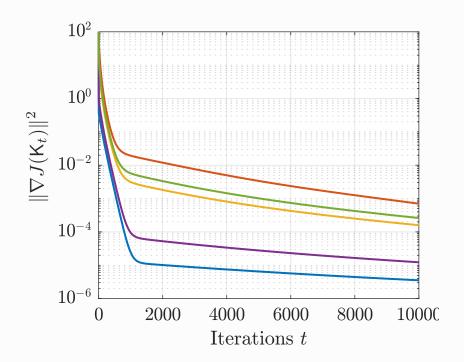
- Non-unique global optima, spurious stationary points
- Minimal stationary points are globally optimal

More results are presented in arXiv:2102.04393.

Future Directions

- A comprehensive classification of stationary points
- Conditions for existence of minimal globally optimal controllers
- Saddle points with vanishing Hessians may exist. How to deal with them?
- Alternative model-free parametrization of dynamic controllers





References

Full version of the paper: arXiv:2102.04393

- [Tu 2017] S. Tu, R. Boczar, A. Packard, and B. Recht. Non-asymptotic analysis of robust control from coarse-grained identification. arXiv preprint arXiv:1707.04791, 2017.
- [Boczar 2018] R. Boczar, N. Matni, and B. Recht. Finite-data performance guarantees for the output-feedback control of an unknown system. In Proceedings of the 57th IEEE Conference on Decision and Control, pages 2994–2999, 2018.
- [Simchowitz 2020] M. Simchowitz, K. Singh, and E. Hazan. Improper learning for non-stochastic control. Proceedings of 33rd Conference on Learning Theory, pages 3320-3436, 2020.
- [Zheng 2021] Y. Zheng, L. Furieri, M. Kamgarpour, and N. Li. Sample complexity of linear quadratic gaussian (LQG) control for output feedback systems. In Proceedings of the 3rd Conference on Learning for Dynamics and Control, pages 559-570, 2021.
- [Venkataraman 2019] H. K. Venkataraman and P. J. Seiler. Recovering robustness in model-free reinforcement learning. In 2019 American Control Conference, pages 4210-4216, 2019.
- [Fazel 2018] M. Fazel, R. Ge, S. Kakade, and M. Mesbahi. Global convergence of policy gradient methods for the linear quadratic regulator. In Proceedings of the 35th International Conference on Machine Learning, pages 1467-1476, 2018.
- [Malik 2019] D. Malik, A. Pananjady, K. Bhatia, K. Khamaru, P. Bartlett, M. Wainwright. Derivative-free methods for policy optimization: Guarantees for linear quadratic systems. In Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics, pages 2916-2925, 2019.
- [Mohammadi 2019] H. Mohammadi, A. Zare, M. Soltanolkotabi, and M. R. Jovanović. Convergence and sample complexity of gradient methods for the model-free linear quadratic regulator problem. arXiv preprint arXiv:1912.11899, 2019.
- [Bu 2021] J. Bu, A. Mesbahi, and M. Mesbahi. On topological properties of the set of stabilizing feedback gain. IEEE Transactions on Automatic Control, vol. 66, no. 2, pages 730-744, 2021.