

for

Distributed Reinforcement Learning Decentralized Linear Quadratic Control

YINGYING LI, YUJIE TANG, RUNYU ZHANG, NA LI Harvard John A. Paulson School of Engineering and Applied Sciences

Algorithm

- Algorit (ZODP
- Input
- 1 Initiali
- 2 **for** *s*

- Rι

Subroutine SampleUSphere:
Subroutine SampleUSphere:
Each agent *i* samples
$$V_i \in \mathbb{R}^{m_i \times m_i}$$
 with i.i.d.
termination steps T_G and T_J , initial controllers
 $K_{1,0}, \ldots, K_{N,0}$.
Ize $K_i(1) \leftarrow K_{i,0}$.
 $= 1, 2, \ldots, T_G$ do
/ Step 1: Sampling from the unit sphere
ach agent *i* generates $D_i(s) \in \mathbb{R}^{m_i \times m_i}$ by the
subroutine SampleUSphere.
/ Step 2: Local estimation of the global objective
un GlobalCostEst $(K_i(s) + rD_i(s))_{i=1}^N, T_J)$,
and let agent *i*'s returned value be denoted by
 $\tilde{I}_i(s)$.
/ Step 3: Local estimation of partial gradients
ach agent *i* estimates the partial gradients
ach agent *i* estimates the partial gradients
ach agent *i* updates $K_i(s+1) = K_i(s) - \eta \hat{G}_i(s)$.
/ Step 4: Distributed policy gradient on local
controllers
ach agent *i* updates $K_i(s+1)$ by
 $K_i(s+1) = K_i(s) - \eta \hat{G}_i^*(s)$.
Subroutine SampleUSphere:
Subroutine SampleUSphere:
Subroutine SampleUSphere:
Conce ingredients:
Policy gradient (Step 4)
 $K_i(s+1) = K_i(s) - \eta \hat{G}_i(s)$.
Consensus algorithms (Steps 1 & 2, S:
 $y_i(t+1) = F_i\left(\sum_{j=1}^N W_{ij} y_j(t)$, new
formance

Ea

7 end

Pe

THEOREM

wen sufficiently small
$$\epsilon > 0$$
, suppose the parameters of ZODPO
tisfy
 $r = O(\sqrt{\epsilon})$ $\eta = O\left(\frac{\epsilon^2}{n_K^2}\right)$ $\overline{J} \ge 50J_0$
 $J = \Omega\left(\frac{n_K}{\epsilon} \max\left\{\theta_0, \frac{N}{1-\rho_W}\right\}\right)$ $T_S = \Omega\left(\ln\frac{1}{\epsilon}\right)$ $T_G = \Theta\left(\frac{n_K^2}{\epsilon^3}\right)$
en with high probability, all the controllers generated by ZODPO
e stabilizing, and
 $\mathbb{E}\left[\frac{1}{T_G}\sum_{s=1}^{T_G} \|\nabla J(K_1(s),...,K_N(s))\|^2\right] \le \epsilon$
nitial objective value θ_0 : constant determined by the
system and initial controller $\rho_W = \|W - N^{-1}\mathbf{1}\mathbf{1}^{\mathsf{T}}\|$

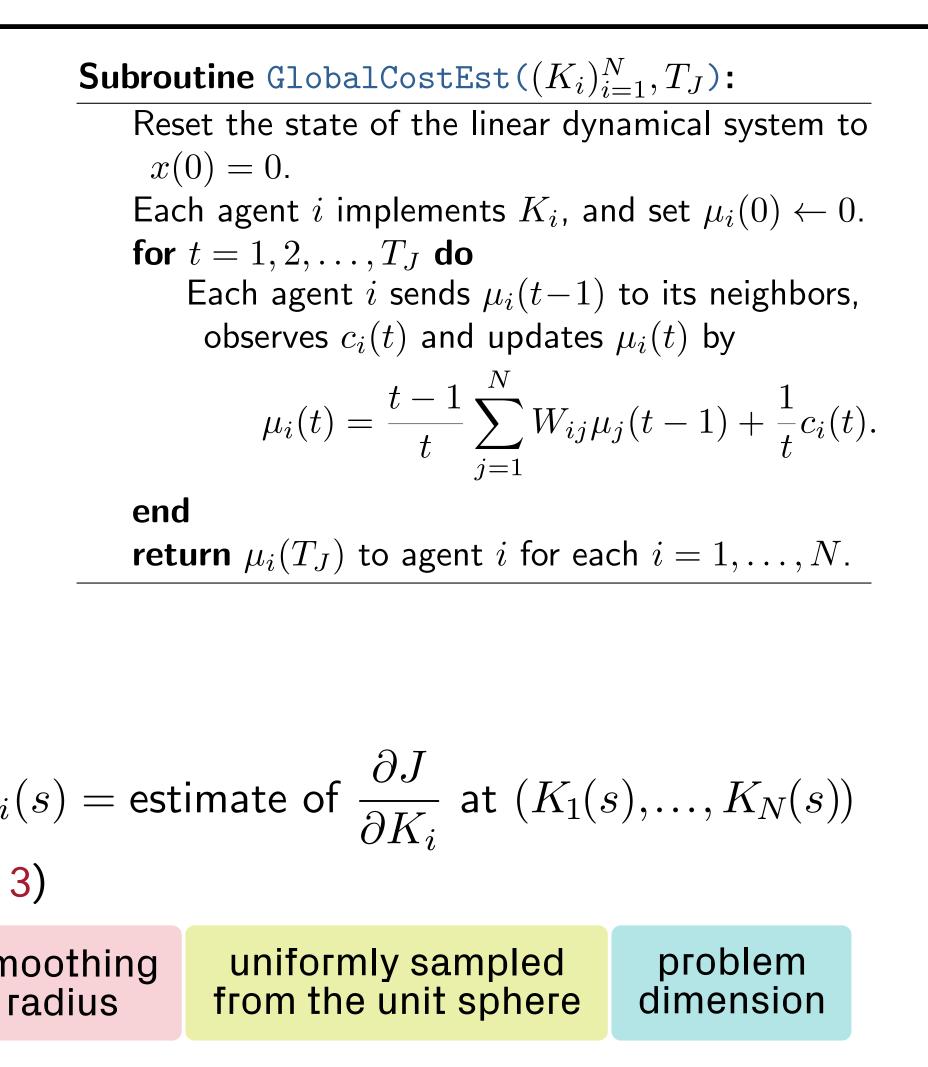
Given sufficiently small
$$\epsilon > 0$$
, suppose the parameters of ZODPO
satisfy
 $r = O(\sqrt{\epsilon})$ $\eta = O\left(\frac{\epsilon^2}{n_K^2}\right)$ $\overline{J} \ge 50J_0$
 $T_J = \Omega\left(\frac{n_K}{\epsilon} \max\left\{\theta_0, \frac{N}{1-\rho_W}\right\}\right)$ $T_S = \Omega\left(\ln\frac{1}{\epsilon}\right)$ $T_G = \Theta\left(\frac{n_K^2}{\epsilon^3}\right)$
Then with high probability, all the controllers generated by ZODPO
are stabilizing, and
 $\mathbb{E}\left[\frac{1}{T_G}\sum_{s=1}^{T_G} \|\nabla J(K_1(s),...,K_N(s))\|^2\right] \le \epsilon$
: initial objective value θ_0 : constant determined by the
system and initial controller $\rho_W = \|W - N^{-1}\mathbf{1}\mathbf{1}^{\mathsf{T}}\|$

$$\begin{aligned} & \text{ntly small } \epsilon > 0, \text{ suppose the parameters of ZODPO} \\ & \eta = O\left(\frac{\epsilon^2}{n_K^2}\right) \quad \bar{J} \ge 50J_0 \\ & \max\left\{\theta_0, \frac{N}{1-\rho_W}\right\}\right) \quad T_S = \Omega\left(\ln\frac{1}{\epsilon}\right) \quad T_G = \Theta\left(\frac{n_K^2}{\epsilon^3}\right) \\ & \text{h probability, all the controllers generated by ZODPO} \\ & \text{g, and} \\ & \mathbb{E}\left[\frac{1}{T_G}\sum_{s=1}^{T_G} \|\nabla J(K_1(s), ..., K_N(s))\|^2\right] \le \epsilon \\ & \text{value} \quad \theta_0: \text{ constant determined by the system and initial controller} \quad \rho_W = \|W - N^{-1}\mathbf{1}\mathbf{1}^\top\| \end{aligned}$$

A Derivative-Free Policy Optimmization Approach

Full paper available at

https://arxiv.org/abs/1912.09135



SampleUSphere & GlobalCostEst)

 $info_i(t)$

W: communication matrix doubly stochastic

Sample complexity:
$$T_G T_J = O\left(\frac{n_K^3}{\epsilon^4} \max\left\{\theta_0, \frac{N}{1-\rho_W}\right\}\right)$$

y: sample complexity is polynomial in rse of error tolerance

- ber of controller parameters
- ber of agents
- f network structure: $O\left(\frac{N}{1-\rho_W}\right)$

example: multi-zone HVAC control

