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Success of Data-driven Decision Making

1 Data-driven decision-making has achieved great success for complex tasks in
dynamical systems, e.g., robotic manipulation/locomotion, networked systems,
game playing, etc.

O Reinforcement learning (RL) has served as one backbone of the recent successe
of data-driven decision-making.

1 Policy optimization as one of the major workhorses of modern RL.

At last — a computer program that
can beat a champion Go player PAGE

ALL SYSTEMS GO
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Policy Optimization for Control

Opportunities

Easy-to-implement
Scalable to high-dimensional problems

Enable model-free search with rich
observations

Challenges

Nonconvex optimization

Lack of principled algorithms for optimality
(e.g., avoiding saddles/local minimizers)

Hard to obtain theoretical guarantees (e.g.,
robustness/stability, sample efficiency)



Some Historical Background

Major approaches for optimal & robust controller synthesis:

» Solving Riccati equations
* LMI-based convex reformulation = Policy optimization



Some Historical Background

Major approaches for optimal & robust controller synthesis:

LMI-based convex reformulation

Policy optimization

Has became popular since 1980s due to
global guarantees and efficient interior
point solvers

Relies on re-parameterizations (does not
optimize over controller/policy directly)

<€ >

Examples: State-feedback or full-order
output-feedback #H,/H., control, etc.

Has a long history in control theory

+ [Apkarian & Noll, 2006] [Saeki, 2006]
[Apkarian et al., 2008] [Gumussoy et al.,
2009] [Arzelier et al., 2011], etc.

e HIFOO, hinfstruct

Good empirical performance
 Scalability, flexibility, ...

Weak guarantees, unpopular among
theorists




Some Historical Background

Major approaches for optimal & robust controller synthesis:

LMI-based convex reformulation

= Policy optimization

Has became popular since 1980s due to
global guarantees and efficient interior
point solvers

Relies on re-parameterizations (does not
optimize over controller/policy directly)

K=YX!
<€ >

Examples: State-feedback or full-order
output-feedback #H,/H., control, etc.

* Favorable properties have been
revealed recently for a range of
benchmark problems:

v LQR v LQG
v H, state-feedback

* A recent survey paper:

ANNUAL REVIEW OF CONTROL, ROBOTICS, AND AUTONOMOUS SYSTEMS Volume 6, 2023

Review Article | Open Access

Toward a Theoretical Foundation of Policy Optimization for
Learning Control Policies

Bin Hu?, Kaiging Zhang?3, Na Li#, Mehran Mesbahi®, Maryam Fazel®, and Tamer Basar!




Our Focus

This talk: Benign Nonconvexity in Control via
Extended Convex Lifting (ECL)

4 _yr Nonconvex LMI-based
policy convex
2| W20 Optimization reformulation

» Reconciles the gap between nonconvex policy optimization and
LMI-based convex reformulations.

» For non-degenerate policies, all Clarke stationary points are
globally optimal.



] Problem Setup and Maotivating Examples
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Problem Setup

Disturbance - . Regulated output
d(t) —» Dynamical > 2(t)
system Polic
w1 T ) 4
parameterization
Control Measured
input Feedback <« output
policy
State
feedback u(t) = Kz(t)
System a?(t) = A:U(t) + Bu(t) + wa(t) df(t)
feedback
Performance (t) Ql/Qx(t) u(t) = C&(t) + Dyy(t)
. I y t — [ 1/2 ]
Send REult) C = {K : Closed-loop system is stable}
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Challenges in Policy Optimization

me J(K) Policy optimization is
enerally nonconvex!
st. KeC & Y

* The set of dynamic stabilizing policies is

nonconvex and may even be disconnected.
[Tang, Zheng, Li, 2023]

* LQR/LQG costs are smooth but nonconvex

(=) — N w =

= H_ cost are non-smooth and nonconvex

A long way to go if we want to
establish theoretical guarantees!
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Challenges in Policy Optimization

min J(K) Policy optimization is

K
enerally nonconvex!
st. Kel & Y

* The set of dynamic stabilizing policies is

nonconvex and may even be disconnected.
[Tang, Zheng, Li, 2023]

* LQR/LQG costs are smooth but nonconvex

= H_ cost are non-smooth and nonconvex

Start from the very basic:

When is a stationary point globally optimal?

(=) — N w =
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Inspiration from Convex Reformulations

Our idea: Exploit LMI-based convex reformulations of control problems

"= They reveal the hidden convexity of policy optimization landscapes

= Quite successful for LQR/H ., state-feedback control

. min tr [(Q + KTRK)X] Y =KX min tr (Q + X 'YTRY)

K, X XY
| Y al
s — s.t. X =Lyap(A+ BK,W) s.t. 0=AX+BY

] \\ g X “ 0 Change Of +XAT+YTBT+W 1L
variable X« 0 0

= (Can we build a general framework for those control problems with

convex reformulations?
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J Extended Convex Lifting (ECL)
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Extended Convex Lifting (ECL)

A schematic illustration of ECL:

J(K) uifted get Diffeomorphism moooo

Elft L |
N
/" i o convex, auxiliary

J(K); I
\/' Global
Epigraph optimality

Lifting
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Extended Convex Lifting (ECL)

A schematic illustration of ECL:

J(K)

Lifting

Lifted set

Ly

Why lifting?

For many control problems, a
direct convexification is not
possible

A lifting procedure
corresponding to Lyapunov
variables is necessary.
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Extended Convex Lifting (ECL)

A schematic illustration of ECL:

Liiited, se | Diffeomorphism
L 1t f | }‘ f cvx X gaux
® e b ”
Why auxiliary set? \ convex  auxiliary
4 N\ 4 N\
= | oosely speaking, it is related to L Fevx X Ui
similarity transformations of
. y .. (K7 s é.) (/77 Cla CZ)
dynamic policies - J
" Needed for output-feedback inf J(K) equivalent inf ~
problems K 7,61
S.t. K - C s.t. (77 Cl) S FCVX

nonconvex convex
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J(K)

Extended Convex Lifting (ECL)

Lifted set

Diffeomorphism  ~------

‘let 7 ECL (prototype):

Eplgraph optimality

CVX X gauX
Llftmg /_,/ “ o convex auxiliary
I = A lifted set L}, of the epigraph:
4 : timat epi(J) = mk (Lit)

= A diffeomorphism ® : L, — F.. . XG...
epi(J Ly Foo X G such that

(K, 7Y, g) (’}/, Cl? CQ) (I)(Ka g g) — (77 Cl? C2)

Existence of this ECL prototype guarantees
all Clarke stationary points are globally optimal

¢ Clarke stationary points: Generalization of stationary points to nonsmooth functions,

based on the notion of Clarke subdifferential
18



Extended Convex Lifting (ECL)

1 What could this prototype go wrong?

= Existing convexifications of LQG and H_, output-feedback control are based on

strict LMIs:
ATP+ PA
> LQG . i BTP
"ATP + PA
> H,: BTP
C

PB

_ﬂ] <0,

PB CT

—~I DT
D —I

[P ol

cC T ] >0, trace(T') <~

<0 (bounded real lemma)

» Strict LMIs only characterize the strict epigraph
epi (1) = {(K,7) | 7 > J(K)}

= Difficult to analyze Clarke stationary points only via strict epigraphs

N

Used to construct the
lifted set L,
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Extended Convex Lifting (ECL)

d What if we turn to non-strict versions of LMIs to construct L?

» Many points in the non-strict epigraph (i.e., in the graph of J) will be covered
epis (1) = {(K,7) [ 7> J(K)}

= But some points in epis(J) will still not be covered

‘ Those points will be called degenerate

= Some points outside epi~(J) will be covered

‘ We modify the lifting procedure in the prototype
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J(K)

v=

Extended Convex Lifting (ECL)

e ‘u SEESE FLlx G, Extended Convex Lifting:
— :'C_mlveﬁ R A lifted set Ly satisfying
».. o i, () € mo(Lin) € clepis (J)
= A diffeomorphism ® : L, — F...XG...
Lig Fevx X Gaux such that
(K, 7, &) (7, ¢y €9) O(K, v, &) = (v, ¢, &)

Definition. K is called non-degenerate if (K, J(K)) € mk ~(Lis)
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Extended Convex Lifting (ECL)

Lifted set . fer e
J(K) C. Diffeomorph Fox'x Gux  Extended Convex Lifting:
Lifting:“‘ L/) P E_C_onvez(_i auxiliary
J(K)é I = A lifted set Ly satisfying
VA - () € o () € clepiz ()]
= A diffeomorphism ® : L, — F...XG...
£1ft fcvx X gaux such that
(Ka s g) (77 Cl? CQ) (I)(K, 7, f) — (77 Cl? C2)

Given an ECL, under mild conditions,
all non-degenerate Clarke stationary points are

globally optimal.
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) Applications for Optimal and Robust Control

J
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Linear Quadratic Regulator

 Problem setup
Policy: wu(t) = Kx(t)

t) ——p - 2(1
w(t) System ) Objective function:
u(t) z(t) J(K)=tr[(Q+ K'RK)X]
Poli
olicy ]‘_ where X = Lyap(A+ BK,W)

Dynamics:  z(t) = Az(t) + Bu(t) + By,w(t)

Performance: J = || T, || %, .

0= | Jort)

ky

nonconvex & smooth
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Linear Quadratic Regulator

4 Construction of ECL
Step 1: Lifting
Lign = {(K,7,X) | X = 0,X = Lyap(4A+ BK, W),y > tr[(Q + K' RK)X] }

Step 2: Convex set
Fip ={(,Y,X): X - 0,AX +BY + XA"+Y'B' + W = 0,7 > tr(QX + X 'Y'RY)}

Step 3: Diffeomorphism & (K, v, X) = (v, KX, X), V(K,v,X) € L

= No auxiliary set Theorem. Any stationary point of the

= Lifted set satisfies epi (J) = 7k (Lror) LQR cost function is globally

» All policies are non-degenerate optimal.
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Linear Quadratic Gaussian

 Problem setup dE (4
Policy % = A&(t) + Byy(t)
dt) —>  gystem |~ V) u(t) = C&(t)
ul) o) K = (A, Bk, Ck)
Policy ]4—

1/2 t - S
2(t) = [Q x(t)] d(t) = [w( )] disconnected multiple globally
domain optimal points
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Linear Quadratic Gaussian

O Construction of the ECL: Based on the convexification proposed in [Scherer et al., 1997]

Theorem. 1. An ECL for LQG exists, of which G.. . is the set of invertible matrices.

aux

2. A policy K is non-degenerate if and only if it is informative in the sense that
: T
lim E[(£)€(t)"
has full rank. So any informative stationary point is globally optimal.

3. Non-degenerate policies are generic in the sense that degenerate policies
form a set of measure zero.

= Part 2 extends [Umenberger et al., 2022, Theorem 1(ii)] from Kalman filtering to LQG.

= We also show that minimal stationary policies are non-degenerate, generalizing our exisiting
results in [Tang, Zheng, Li, 2023].
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H., Output-Feedback Control

 Problem setup

System

Policy ]4—

Dynamics:  z(t) = Axz(t) + Bu(t) + By,w(t)

dg(1)

Policy: ———~ = A/ &(t) + Bgy(t)

di
u(t) = Cé(t) + Dyy(t)

K= (AK7 By, CK) DK)

nonconvex

_|_
nonsmooth
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H., Output-Feedback Control

O Construction of the ECL: Based on the convexification proposed in [Scherer et al., 1997]

Theorem. 1. An ECL for H_ output-feedback control exists.

2. A policy K is non-degenerate if and only if

a) There exists a non-strict certificate b) The block P, is invertible.
P > 0 of the H_, cost. o [P P
AT(K)P + PAg(K) PBa(K) CT(K) P P
Bl(K)P —J(K)I DJX(K) | =0
Ca(K) Da(K) —J(K)I

So a Clarke stationary point is globally optimal if these conditions hold.

» Physical interpretation of non-degeneracy is not as clear as LQG.

= We conjecture that non-degenerate policies for H_, output-feedback control are also generic,
with some numerical evidence, but a proof is not known yet.
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1 Conclusions
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Nonconvex Policy Optimization for Control

1 Policy optimization in control can be nonconvex and non-smooth.

d Extended Convex Lifting (ECL) reveals benign nonconvexity.

Lifted set Diffeomorphism Fe-mTog

J(K) |
A Lyg f | Fevx! X Gaux
Lifting " ¢ | convex | auxiliar
J(K); i l
’ Global
»K Epigraph optimality
K

L The notion of non-degeneracy provides a global optimality certificate
for Clarke stationary points.
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Ongoing & Future Work

10°

= How to incorporate finer analytical properties
(e.g., weak PL inequality) in ECL?

* How to justify non-degeneracy only using data?

IV (Ke)II?

= How to deal with degenerate points in local

policy search? Avoiding saddle points?

0 500 1000 1500 2000 2500
Iterations ¢

Control (Non)convex
Theory Optimization g 0708 {
go.m? |
L
0.706 4
Reinforcement 01

Learning
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Thank you for your attention!

O Policy optimization in control can be nonconvex and non-smooth.

d Extended Convex Lifting (ECL) reveals benign nonconvexity.

L The notion of non-degeneracy provides a global optimality certificate for stationary points.

Lifted set

) Ly 4

Diffeomorphism -----5

Lifting - P | |

' convex, auxiliary

| ‘ Global
Epigraph optimality
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