

Benign Nonconvex Landscapes in Optimal and Robust Control

唐聿劼 Yujie Tang

北京大学 工业工程与管理系

Department of Industrial Engineering & Management, Peking University

Acknowledgement

Yang Zheng
University of California San Diego

Chih-Fan (Rich) Pai University of California San Diego

- Yujie Tang, Yang Zheng. "On the Global Optimality of Direct Policy Search for Nonsmooth \mathcal{H}_{∞} Output-Feedback Control." In Proceedings of the 62nd IEEE Conference on Decision and Control (CDC), pp. 6148-6153, 2023.
- Yang Zheng, Chih-Fan Pai, Yujie Tang. "Benign Nonconvex Landscapes in Optimal and Robust Control, Part I: Global Optimality." Preprint arXiv:2312.15332 (2023)
- Yang Zheng, Chih-Fan Pai, Yujie Tang. "Benign Nonconvex Landscapes in Optimal and Robust Control, Part II: Extended Convex Lifting." Preprint arXiv:2406.04001 (2024)

Success of Data-driven Decision Making

- □ Data-driven decision-making has achieved great success for complex tasks in dynamical systems, e.g., robotic manipulation/locomotion, networked systems, game playing, etc.
- □ Reinforcement learning (RL) has served as one backbone of the recent successe of data-driven decision-making.
- □ Policy optimization as one of the major workhorses of modern RL.

Policy Optimization for Control

Opportunities

- Easy-to-implement
- Scalable to high-dimensional problems
- Enable model-free search with rich observations

Challenges

- Nonconvex optimization
- Lack of principled algorithms for optimality (e.g., avoiding saddles/local minimizers)
- Hard to obtain theoretical guarantees (e.g., robustness/stability, sample efficiency)

Some Historical Background

Major approaches for optimal & robust controller synthesis:

- Solving Riccati equations
- LMI-based convex reformulation

Policy optimization

Some Historical Background

Major approaches for optimal & robust controller synthesis:

- Solving Riccati equations
- LMI-based convex reformulation
- Has became popular since 1980s due to global guarantees and efficient interior point solvers
- Relies on re-parameterizations (does not optimize over controller/policy directly)

• Examples: State-feedback or full-order output-feedback $\mathcal{H}_2/\mathcal{H}_{\infty}$ control, etc.

Policy optimization

- Has a long history in control theory
 - [Apkarian & Noll, 2006] [Saeki, 2006]
 [Apkarian et al., 2008] [Gumussoy et al., 2009] [Arzelier et al., 2011], etc.
 - HIFOO, hinfstruct
- Good empirical performance
 - Scalability, flexibility, ...
- Weak guarantees, unpopular among theorists

Some Historical Background

Major approaches for optimal & robust controller synthesis:

- Solving Riccati equations
- LMI-based convex reformulation
- Has became popular since 1980s due to global guarantees and efficient interior point solvers
- Relies on re-parameterizations (does not optimize over controller/policy directly)

• Examples: State-feedback or full-order output-feedback $\mathcal{H}_2/\mathcal{H}_\infty$ control, etc.

Policy optimization

 Favorable properties have been revealed recently for a range of benchmark problems:

✓ LQR

✓ LQG

 \checkmark \mathcal{H}_{∞} state-feedback

A recent survey paper:

ANNUAL REVIEW OF CONTROL, ROBOTICS, AND AUTONOMOUS SYSTEMS Volume 6, 2023

Review Article | Open Access

Toward a Theoretical Foundation of Policy Optimization for Learning Control Policies

Bin Hu¹, Kaiqing Zhang^{2,3}, Na Li⁴, Mehran Mesbahi⁵, Maryam Fazel⁶, and Tamer Başar¹

Our Focus

- Reconciles the gap between nonconvex policy optimization and LMI-based convex reformulations.
- ➢ For non-degenerate policies, all Clarke stationary points are globally optimal.

Outline

- Problem Setup and Motivating Examples
- **□** Extended Convex Lifting (ECL)
- Applications for Optimal and Robust Control
- Conclusions

Problem Setup

System dynamics

$$\dot{x}(t) = Ax(t) + Bu(t) + B_w w(t)$$
$$y(t) = Cx(t) + D_v v(t)$$

Performance signal

$$z(t) = \begin{bmatrix} Q^{1/2}x(t) \\ R^{1/2}u(t) \end{bmatrix}$$

$$\begin{array}{ll} \text{State} & u(t) = \textit{\textbf{K}}x(t) \end{array}$$
 feedback

Output
$$\frac{d\xi(t)}{dt} = A_{\rm K}\xi(t) \, + \, B_{\rm K}y(t)$$
 feedback
$$u(t) = C_{\rm K}\xi(t) \, + \, D_{\rm K}y(t)$$

$$C = \{K : Closed-loop system is stable\}$$

Challenges in Policy Optimization

$$\min_{\mathsf{K}} \ J(\mathsf{K})$$
 s.t. $\mathsf{K} \in \mathcal{C}$

Policy optimization is generally **nonconvex**!

- The set of dynamic stabilizing policies is nonconvex and may even be disconnected.
 [Tang, Zheng, Li, 2023]
- LQR/LQG costs are smooth but nonconvex
- \mathcal{H}_{∞} cost are non-smooth and nonconvex

A long way to go if we want to establish theoretical guarantees!

Challenges in Policy Optimization

$$\min_{\mathsf{K}} \ J(\mathsf{K})$$
 s.t. $\mathsf{K} \in \mathcal{C}$

Policy optimization is generally **nonconvex**!

- The set of dynamic stabilizing policies is nonconvex and may even be disconnected.
 [Tang, Zheng, Li, 2023]
- LQR/LQG costs are smooth but nonconvex
- \mathcal{H}_{∞} cost are non-smooth and nonconvex

Start from the very basic:

When is a stationary point globally optimal?

Inspiration from Convex Reformulations

Our idea: Exploit LMI-based convex reformulations of control problems

- They reveal the hidden convexity of policy optimization landscapes
- lacktriangle Quite successful for LQR/ \mathcal{H}_{∞} state-feedback control

Can we build a general framework for those control problems with convex reformulations?

Outline

- □ Problem Setup and Motivating Examples
- Extended Convex Lifting (ECL)
- Applications for Optimal and Robust Control
- Conclusions

A schematic illustration of ECL:

A schematic illustration of ECL:

Why lifting?

- For many control problems, a direct convexification is not possible
- A lifting procedure corresponding to Lyapunov variables is necessary.

A schematic illustration of ECL:

Why auxiliary set?

- Loosely speaking, it is related to similarity transformations of dynamic policies
- Needed for output-feedback problems

ECL (prototype):

• A lifted set \mathcal{L}_{lft} of the epigraph:

$$\operatorname{epi}(J) = \pi_{\mathsf{K},\gamma}(\mathcal{L}_{\mathrm{lft}})$$

lacktriangledown A diffeomorphism $\Phi: \mathcal{L}_{\mathrm{lft}} o \mathcal{F}_{\mathrm{cvx}} { imes} \mathcal{G}_{\mathrm{aux}}$ such that

$$\Phi(\mathsf{K},\,\gamma,\,\xi) = (\gamma,\,\zeta_1,\,\zeta_2)$$

Existence of this ECL prototype guarantees

all Clarke stationary points are globally optimal

Clarke stationary points: Generalization of stationary points to nonsmooth functions, based on the notion of Clarke subdifferential

- ☐ What could this prototype go wrong?
 - Existing convexifications of LQG and \mathcal{H}_{∞} output-feedback control are based on strict LMIs:

Strict LMIs only characterize the strict epigraph

$$\operatorname{epi}_{>}(J) \coloneqq \{(\mathsf{K}, \gamma) \mid \gamma > J(\mathsf{K})\}$$

Difficult to analyze Clarke stationary points only via strict epigraphs

- \square What if we turn to non-strict versions of LMIs to construct \mathcal{L}_{lft} ?
 - Many points in the non-strict epigraph (i.e., in the graph of J) will be covered $\operatorname{epi}_{>}(J) \coloneqq \{(\mathsf{K}, \gamma) \mid \gamma \geq J(\mathsf{K})\}$
 - But some points in $epi_>(J)$ will still **not be covered**
 - Those points will be called **degenerate**
 - Some points outside $epi_{>}(J)$ will be covered
 - We modify the lifting procedure in the prototype

Extended Convex Lifting:

lacksquare A lifted set \mathcal{L}_{lft} satisfying

$$\operatorname{epi}_{>}(J) \subseteq \pi_{\mathsf{K},\gamma}(\mathcal{L}_{\mathrm{lft}}) \subseteq \operatorname{cl} \operatorname{epi}_{\geq}(J)$$

lacktriangledown A diffeomorphism $\Phi: \mathcal{L}_{\mathrm{lft}} o \mathcal{F}_{\mathrm{cvx}} { imes} \mathcal{G}_{\mathrm{aux}}$ such that

$$\Phi(\mathsf{K},\,\gamma,\,\xi) = (\gamma,\,\zeta_1,\,\zeta_2)$$

Definition. K is called **non-degenerate** if $(K, J(K)) \in \pi_{K,\gamma}(\mathcal{L}_{lft})$

Extended Convex Lifting:

lacksquare A lifted set $\mathcal{L}_{\mathrm{lft}}$ satisfying

$$\operatorname{epi}_{>}(J) \subseteq \pi_{\mathsf{K},\gamma}(\mathcal{L}_{\mathrm{lft}}) \subseteq \operatorname{cl} \operatorname{epi}_{\geq}(J)$$

lacktriangledown A diffeomorphism $\Phi: \mathcal{L}_{\mathrm{lft}} o \mathcal{F}_{\mathrm{cvx}} { imes} \mathcal{G}_{\mathrm{aux}}$ such that

$$\Phi(\mathsf{K},\,\gamma,\,\xi)=(\gamma,\,\zeta_1,\,\zeta_2)$$

Main Result

Given an ECL, under mild conditions,

all non-degenerate Clarke stationary points are globally optimal.

Outline

- □ Problem Setup and Motivating Examples
- **□** Extended Convex Lifting (ECL)
- Applications for Optimal and Robust Control
- Conclusions

Linear Quadratic Regulator

☐ Problem setup

Dynamics: $\dot{x}(t) = Ax(t) + Bu(t) + B_w w(t)$

Performance: $J = \|\mathbf{T}_{zw}\|_{\mathcal{H}_2}$

$$z(t) = \begin{bmatrix} Q^{1/2}x(t) \\ R^{1/2}u(t) \end{bmatrix}$$

Policy: u(t) = Kx(t)

Objective function:

$$J(K) = \operatorname{tr}[(Q + K^{\mathsf{T}}RK)X]$$

where $X = \operatorname{Lyap}(A + BK, W)$

nonconvex & smooth

Linear Quadratic Regulator

□ Construction of ECL

Step 1: Lifting

$$\mathcal{L}_{LQR} = \{ (K, \gamma, X) \mid X \succ 0, X = Lyap(A + BK, W), \gamma \ge tr[(Q + K^{\mathsf{T}}RK)X] \}$$

Step 2: Convex set

$$\mathcal{F}_{LQR} = \{ (\gamma, Y, X) : X \succ 0, AX + BY + XA^{\mathsf{T}} + Y^{\mathsf{T}}B^{\mathsf{T}} + W = 0, \gamma \ge tr(QX + X^{-1}Y^{\mathsf{T}}RY) \}$$

Step 3: Diffeomorphism
$$\Phi(K, \gamma, X) = (\gamma, KX, X), \forall (K, \gamma, X) \in \mathcal{L}_{LQR}$$

- No auxiliary set
- Lifted set satisfies $\operatorname{epi}_{>}(J) = \pi_{K,\gamma}(\mathcal{L}_{\mathtt{LQR}})$
 - All policies are non-degenerate

Theorem. Any stationary point of the LQR cost function is globally optimal.

Linear Quadratic Gaussian

☐ Problem setup

Dynamics: $\dot{x}(t) = Ax(t) + Bu(t) + B_w w(t)$ $y(t) = Cx(t) + D_v v(t)$

Performance: $J = \|\mathbf{T}_{zd}\|_{\mathcal{H}_2}$

$$z(t) = \begin{bmatrix} Q^{1/2}x(t) \\ R^{1/2}u(t) \end{bmatrix} d(t) = \begin{bmatrix} w(t) \\ v(t) \end{bmatrix}$$

Policy:
$$\frac{d\xi(t)}{dt} = A_{\rm K}\xi(t) + B_{\rm K}y(t)$$

$$u(t) = C_{\rm K}\xi(t)$$

$$\mathsf{K} = (A_\mathsf{K}, \ B_\mathsf{K}, \ C_\mathsf{K})$$

disconnected domain

multiple globally optimal points

Linear Quadratic Gaussian

☐ Construction of the ECL: Based on the convexification proposed in [Scherer et al., 1997]

- **Theorem**. 1. An ECL for LQG exists, of which \mathcal{G}_{aux} is the set of invertible matrices.
 - 2. A policy K is non-degenerate if and only if it is **informative** in the sense that

$$\lim_{t \to \infty} \mathbb{E} \big[x(t) \xi(t)^{\mathsf{T}} \big]$$

has full rank. So any informative stationary point is globally optimal.

- 3. Non-degenerate policies are **generic** in the sense that degenerate policies form a **set of measure zero**.
- Part 2 extends [Umenberger et al., 2022, Theorem 1(ii)] from Kalman filtering to LQG.
- We also show that minimal stationary policies are non-degenerate, generalizing our exisiting results in [Tang, Zheng, Li, 2023].

\mathcal{H}_{∞} Output-Feedback Control

□ Problem setup

Dynamics:
$$\dot{x}(t) = Ax(t) + Bu(t) + B_w w(t)$$

 $y(t) = Cx(t) + D_v v(t)$

Performance: $J = \|\mathbf{T}_{zd}\|_{\mathcal{H}_{\infty}}$

$$z(t) = \begin{bmatrix} Q^{1/2}x(t) \\ R^{1/2}u(t) \end{bmatrix} d(t) = \begin{bmatrix} w(t) \\ v(t) \end{bmatrix}$$

Policy:
$$\frac{d\xi(t)}{dt} = A_{\mathsf{K}}\xi(t) + B_{\mathsf{K}}y(t)$$

$$u(t) = C_{\mathsf{K}}\xi(t) + D_{\mathsf{K}}y(t)$$

$$\mathsf{K} = (A_{\mathsf{K}}, B_{\mathsf{K}}, C_{\mathsf{K}}, D_{\mathsf{K}})$$

\mathcal{H}_{∞} Output-Feedback Control

- ☐ Construction of the ECL: Based on the convexification proposed in [Scherer et al., 1997]
 - **Theorem**. 1. An ECL for \mathcal{H}_{∞} output-feedback control exists.
 - 2. A policy K is non-degenerate if and only if
 - a) There exists a non-strict certificate $P \succ 0$ of the \mathcal{H}_{∞} cost.

$$\begin{bmatrix} A_{\mathrm{cl}}^{\mathsf{T}}(\mathsf{K})P + PA_{\mathrm{cl}}(\mathsf{K}) & PB_{\mathrm{cl}}(\mathsf{K}) & C_{\mathrm{cl}}^{\mathsf{T}}(\mathsf{K}) \\ B_{\mathrm{cl}}^{\mathsf{T}}(\mathsf{K})P & -J(\mathsf{K})I & D_{\mathrm{cl}}^{\mathsf{T}}(\mathsf{K}) \\ C_{\mathrm{cl}}(\mathsf{K}) & D_{\mathrm{cl}}(\mathsf{K}) & -J(\mathsf{K})I \end{bmatrix} \preceq 0$$

b) The block P_{12} is invertible.

$$P = \begin{bmatrix} P_{11} & P_{12} \\ P_{12}^\mathsf{T} & P_{22} \end{bmatrix}$$

So a Clarke stationary point is globally optimal if these conditions hold.

- Physical interpretation of non-degeneracy is not as clear as LQG.
- We conjecture that non-degenerate policies for \mathcal{H}_{∞} output-feedback control are also **generic**, with some numerical evidence, but a proof is not known yet.

Outline

- □ Problem Setup and Motivating Examples
- **□** Extended Convex Lifting (ECL)
- **□** Applications for Optimal and Robust Control
- Conclusions

Nonconvex Policy Optimization for Control

- □ Policy optimization in control can be nonconvex and non-smooth.
- ☐ Extended Convex Lifting (ECL) reveals benign nonconvexity.

☐ The notion of **non-degeneracy** provides a **global optimality certificate** for Clarke stationary points.

Ongoing & Future Work

- How to incorporate finer analytical properties (e.g., weak PL inequality) in ECL?
- How to justify non-degeneracy only using data?
- How to deal with degenerate points in local policy search? Avoiding saddle points?

Thank you for your attention!

- Policy optimization in control can be **nonconvex** and **non-smooth**.
- □ Extended Convex Lifting (ECL) reveals benign nonconvexity.
- ☐ The notion of non-degeneracy provides a global optimality certificate for stationary points.

- Y. Tang, Y. Zheng. "On the Global Optimality of Direct Policy Search for Nonsmooth \mathcal{H}_{∞} Output-Feedback Control." In Proceedings of the 62nd IEEE Conference on Decision and Control (CDC), pp. 6148-6153, 2023.
- Y. Zheng, C.-F. Pai, Y. Tang. "Benign Nonconvex Landscapes in Optimal and Robust Control, Part I: Global Optimality." arXiv:2312.15332
- Y. Zheng, C.-F. Pai, Y. Tang. "Benign Nonconvex Landscapes in Optimal and Robust Control, Part II: Extended Convex Lifting." arXiv:2406.04001