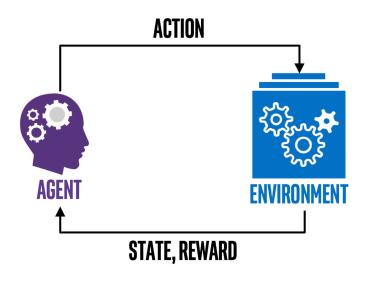


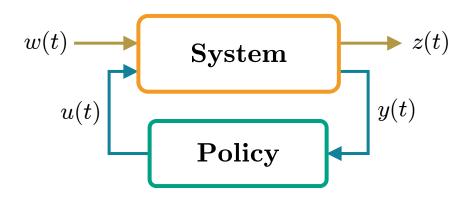
On the Global Optimality of Direct Policy Search for Nonsmooth \mathcal{H}_{∞} Output-Feedback Control

Yujie Tang

Yang Zheng

Policy optimization for control systems

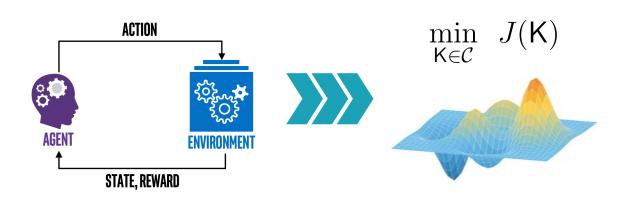


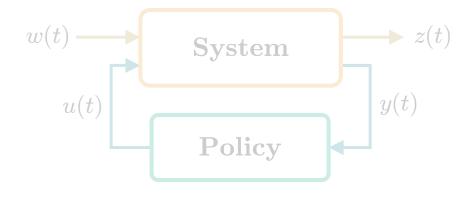


Reinforcement Learning

Policy optimization for control systems

 Policy optimization as one of the major workhorses of modern RL



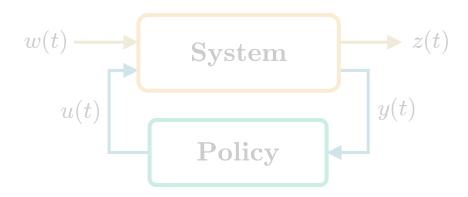


Reinforcement Learning

Policy optimization for control systems

- Policy optimization as one of the major workhorses of modern RL
- Obtaining theoretical guarantees can be hard
 - Nonconvex
 Local search
- Will structured control systems enjoy good performance guarantees?

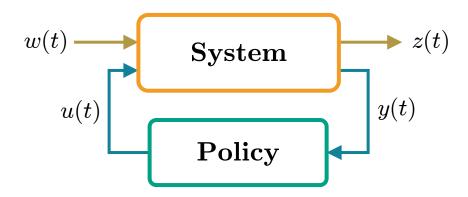
Reinforcement Learning



Policy optimization for control systems

- Policy optimization as one of the major workhorses of modern RL
- Obtaining theoretical guarantees can be hard
 - Nonconvex
 Local search
- Will structured control systems enjoy good performance guarantees?

Reinforcement Learning



- LQR/LQG/H₂ optimal control
- \mathcal{H}_{∞} robust control

Policy optimization for control systems

- Policy optimization as one of the major workhorses of modern RL
- Obtaining theoretical guarantees can be hard
 - Nonconvex
- Local search
- Will structured control systems enjoy good performance guarantees?

Reinforcement Learning

- Policy optimization has a long history in control theory
 - [Apkarian & Noll, 2006] [Saeki, 2006]
 [Apkarian et al., 2008] [Gumussoy et al., 2009] [Arzelier et al., 2011], etc.
 - HIFOO, hinfstruct

Policy optimization for control systems

- Policy optimization as one of the major workhorses of modern RL
- Obtaining theoretical guarantees can be hard
 - Nonconvex
- Local search
- Will structured control systems enjoy good performance guarantees?

Reinforcement Learning

- Policy optimization has a long history in control theory
 - ✓ Very good empirical performance, even compared to Riccati equation based and LMI based approaches
 - ✓ Better scalability, flexibility, etc.
 - Weak guarantees, unpopular among theorists

Policy optimization for control systems

- Policy optimization as one of the major workhorses of modern RL
- Obtaining theoretical guarantees can be hard
 - Nonconvex
- Local search
- Will structured control systems enjoy good performance guarantees?

Reinforcement Learning

 Policy optimization has a long history in control theory

□ Can we obtain stronger theoretical guarantees for policy optimization approaches?

Policy optimization for control systems

- Policy optimization as one of the major workhorses of modern RL
- Obtaining theoretical guarantees can be hard
 - Nonconvex
 Local search
- Will structured control systems enjoy good performance guarantees?

Reinforcement Learning

 Policy optimization has a long history in control theory

Can we obtain stronger theoretical guarantees for policy optimization approaches?

Some Recent Advances

- LQR [Fazel et al., 2018] [Malik et al., 2020]
 [Mohammad et al., 2022]
 [Fatkhullin & Polyak, 2021], etc.
- Risk-sensitive mixed $\mathcal{H}_2/\mathcal{H}_\infty$ design [Zhang et al., 2021]
- \mathcal{H}_{∞} state-feedback [Guo & Hu, 2022]

- LQG [Zheng, Tang & Li, 2021]
 [Mohammadi et al., 2021] [Zheng et al., 2022]
 [Ren et al., 2023] [Duan et al., 2023]
- Kalman filtering
 [Umenberger et al., 2022] [Zhang et al. 2023]
- \mathcal{H}_{∞} output-feedback [Hu & Zheng, 2022]

Toward a Theoretical Foundation of Policy Optimization for Learning Control Policies

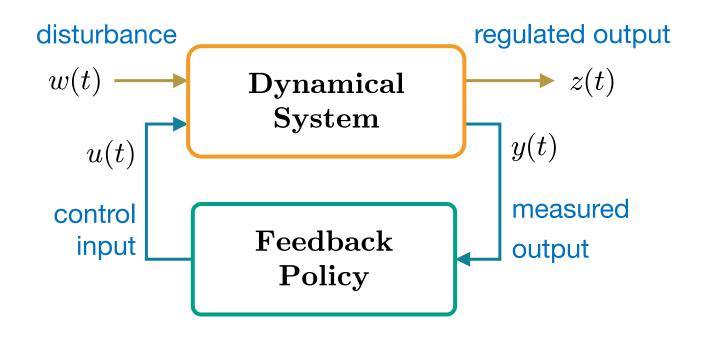
Annual Review of Control, Robotics, and Autonomous Systems

Vol. 6:123-158 (Volume publication date May 2023) https://doi.org/10.1146/annurev-control-042920-020021

Our Focus

- Policy optimization for \mathcal{H}_{∞} output-feedback control
- When is a stationary point globally optimal?

\mathcal{H}_{∞} Output-Feedback Control



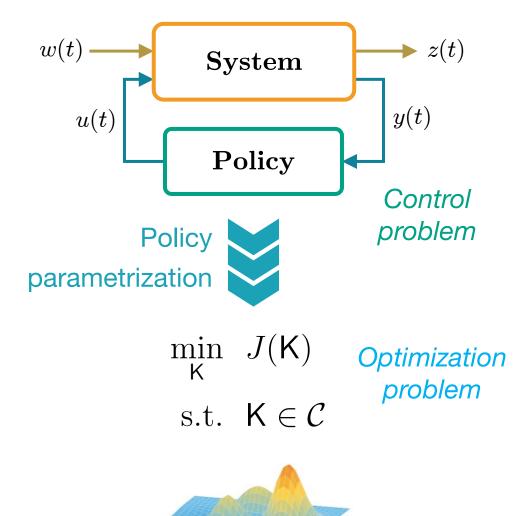
$$\frac{dx(t)}{dt} = Ax(t) + B_1 w(t) + B_2 u(t)$$
$$z(t) = C_1 x(t) + D_{11} w(t) + D_{12} u(t)$$
$$y(t) = C_2 x(t) + D_{21} w(t)$$

Find a feedback policy whose worst-case amplification

$$\sup_{w \neq 0} \frac{\|z\|_{\mathcal{L}_2}}{\|w\|_{\mathcal{L}_2}}$$

is as small as possible.

- Classical approaches:
 - > Riccati equations
 - LMI based convexification

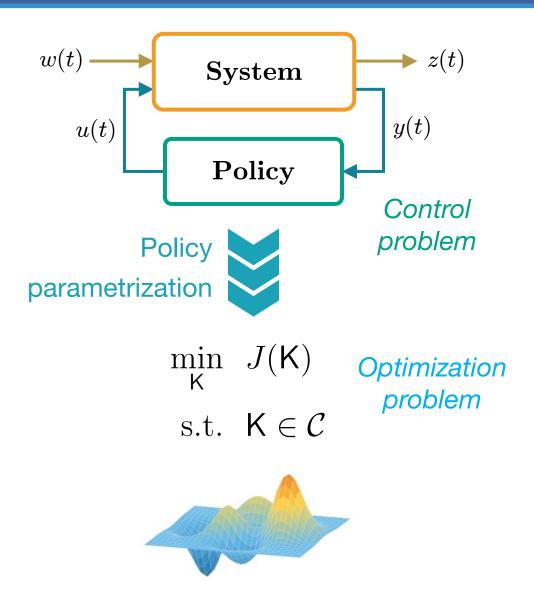


 We consider the class of linear dynamic feedback policies of the form

$$\frac{d\xi(t)}{dt} = A_{\mathsf{K}}\xi(t) + B_{\mathsf{K}}y(t) \qquad \xi(t) \text{ internal state}$$

$$u(t) = C_{\mathsf{K}}\xi(t) + D_{\mathsf{K}}y(t) \qquad \dim \xi(t) = \dim x(t)$$

• Parametrize by $K = (A_K, B_K, C_K, D_K)$



Closed-loop system:

$$\frac{d\tilde{x}(t)}{dt} = A_{\text{cl}}(\mathsf{K})\,\tilde{x}(t) + B_{\text{cl}}(\mathsf{K})\,w(t)$$

$$z(t) = C_{\text{cl}}(\mathsf{K})\,\tilde{x}(t) + D_{\text{cl}}(\mathsf{K})\,w(t)$$

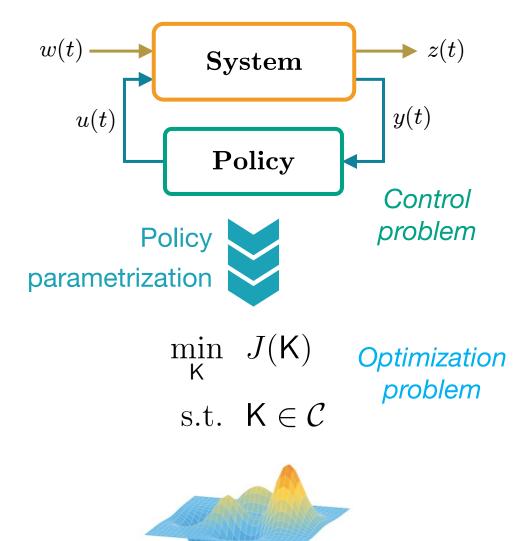
$$\tilde{x}(t) = \begin{bmatrix} x(t) \\ \xi(t) \end{bmatrix}$$

(Internally) stabilizing policies:

$$C = \{K: A_{cl}(K) \text{ is stable}\}$$

= set of full-order linear dynamic policies that internally stabilize the system

➤ Feasible region of the optimization problem Domain of the objective function



Closed-loop system:

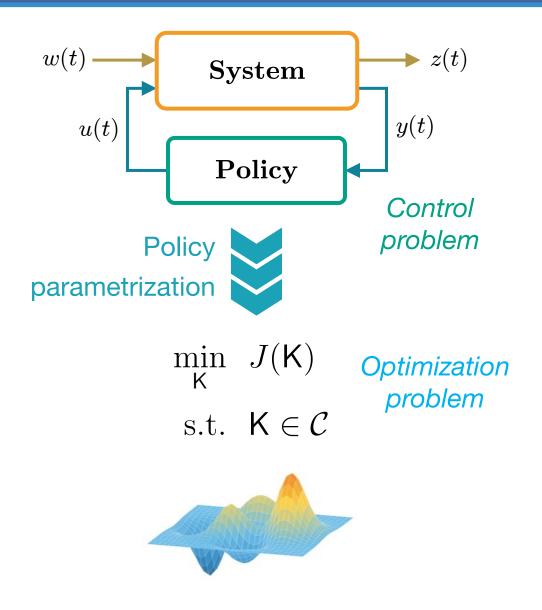
$$\frac{d\tilde{x}(t)}{dt} = A_{\text{cl}}(\mathsf{K})\,\tilde{x}(t) + B_{\text{cl}}(\mathsf{K})\,w(t)$$

$$z(t) = C_{\text{cl}}(\mathsf{K})\,\tilde{x}(t) + D_{\text{cl}}(\mathsf{K})\,w(t)$$

$$\tilde{x}(t) = \begin{bmatrix} x(t) \\ \xi(t) \end{bmatrix}$$

• Objective function:

$$J(\mathsf{K}) = \sup_{w \neq 0} \frac{\|z\|_{\mathcal{L}_2}}{\|w\|_{\mathcal{L}_2}}$$
$$= \mathcal{H}_{\infty} \text{ norm of closed-loop system}$$



- Parametrize by $K = (A_K, B_K, C_K, D_K)$
 - C = set of full-order linear dynamic policiessuch that the closed-loop system is stable
- Objective function:

$$J(\mathsf{K}) = \sup_{w \neq 0} \frac{\|z\|_{\mathcal{L}_2}}{\|w\|_{\mathcal{L}_2}}$$

- Nonconvex
- Nonsmooth

Can we characterize a class of stationary points that are globally optimal, despite the non-convexity and non-smoothness?

Preliminaries on Nonsmooth Analysis

Locally Lipschitz function

Every point x has a neighborhood on which f is Lipschitz continuous

Clarke subdifferential

$$f^{\circ}(x;v)\coloneqq \limsup_{x'\to x,t\downarrow 0} \frac{f(x'+tv)-f(x')}{t}$$
 A

$$\partial f(x) \coloneqq \{g : f^{\circ}(x, v) \ge \langle g, v \rangle, \forall v\}$$

A "local convexification" of f

Subdifferential of the "local convexification"

Lemma. If x is a local minimum of f, then $0 \in \partial f(x)$.

Clarke stationary point

How to Characterize the \mathcal{H}_{∞} cost?

Bounded Real Lemma

Strict version

 $J(\mathsf{K})$ is finite and strictly less than γ if and only if for some $P \succ 0$,

$$\begin{bmatrix} A_{\rm cl}^{\mathsf{T}}(\mathsf{K})P + PA_{\rm cl}(\mathsf{K}) & PB_{\rm cl}(\mathsf{K}) & C_{\rm cl}^{\mathsf{T}}(\mathsf{K}) \\ B_{\rm cl}^{\mathsf{T}}(\mathsf{K})P & -\gamma I & D_{\rm cl}^{\mathsf{T}}(\mathsf{K}) \\ C_{\rm cl}(\mathsf{K}) & D_{\rm cl}(\mathsf{K}) & -\gamma I \end{bmatrix} \prec 0$$

Non-strict version

 $J(\mathsf{K})$ is finite and less than or equal to γ if $A_{\rm cl}(\mathsf{K})$ is stable and for some $P \succ 0$,

$$\begin{bmatrix} A_{\mathrm{cl}}^{\mathsf{T}}(\mathsf{K})P + PA_{\mathrm{cl}}(\mathsf{K}) & PB_{\mathrm{cl}}(\mathsf{K}) & C_{\mathrm{cl}}^{\mathsf{T}}(\mathsf{K}) \\ B_{\mathrm{cl}}^{\mathsf{T}}(\mathsf{K})P & -\gamma I & D_{\mathrm{cl}}^{\mathsf{T}}(\mathsf{K}) \\ C_{\mathrm{cl}}(\mathsf{K}) & D_{\mathrm{cl}}(\mathsf{K}) & -\gamma I \end{bmatrix} \prec 0 \qquad \begin{bmatrix} A_{\mathrm{cl}}^{\mathsf{T}}(\mathsf{K})P + PA_{\mathrm{cl}}(\mathsf{K}) & PB_{\mathrm{cl}}(\mathsf{K}) & C_{\mathrm{cl}}^{\mathsf{T}}(\mathsf{K}) \\ B_{\mathrm{cl}}^{\mathsf{T}}(\mathsf{K})P & -\gamma I & D_{\mathrm{cl}}^{\mathsf{T}}(\mathsf{K}) \\ C_{\mathrm{cl}}(\mathsf{K}) & D_{\mathrm{cl}}(\mathsf{K}) & -\gamma I \end{bmatrix} \preceq 0$$

 $\checkmark P \succ 0$ certificates upper bound γ on \mathcal{H}_{∞} cost

Strict certificate

Non-strict certificate

How to Characterize the \mathcal{H}_{∞} cost?

Bounded Real Lemma

Strict version

if and only if for some $P \succ 0$,

$$\begin{bmatrix} A_{\mathrm{cl}}^\mathsf{T}(\mathsf{K})P + PA_{\mathrm{cl}}(\mathsf{K}) & PB_{\mathrm{cl}}(\mathsf{K}) & C_{\mathrm{cl}}^\mathsf{T}(\mathsf{K}) \\ B_{\mathrm{cl}}^\mathsf{T}(\mathsf{K})P & -\gamma I & D_{\mathrm{cl}}^\mathsf{T}(\mathsf{K}) \\ C_{\mathrm{cl}}(\mathsf{K}) & D_{\mathrm{cl}}(\mathsf{K}) & -\gamma I \end{bmatrix} \prec 0 \qquad \begin{bmatrix} A_{\mathrm{cl}}^\mathsf{T}(\mathsf{K})P + PA_{\mathrm{cl}}(\mathsf{K}) & PB_{\mathrm{cl}}(\mathsf{K}) & C_{\mathrm{cl}}^\mathsf{T}(\mathsf{K}) \\ B_{\mathrm{cl}}^\mathsf{T}(\mathsf{K})P & -\gamma I & D_{\mathrm{cl}}^\mathsf{T}(\mathsf{K}) \\ C_{\mathrm{cl}}(\mathsf{K}) & D_{\mathrm{cl}}(\mathsf{K}) & -\gamma I \end{bmatrix} \preceq 0$$

Non-strict version

 $J(\mathsf{K})$ is finite and strictly less than γ $J(\mathsf{K})$ is finite and less than or equal to γ if $A_{\rm cl}(\mathsf{K})$ is stable and for some $P \succ 0$,

$$\begin{bmatrix} A_{\mathrm{cl}}^{\mathsf{T}}(\mathsf{K})P + PA_{\mathrm{cl}}(\mathsf{K}) & PB_{\mathrm{cl}}(\mathsf{K}) & C_{\mathrm{cl}}^{\mathsf{T}}(\mathsf{K}) \\ B_{\mathrm{cl}}^{\mathsf{T}}(\mathsf{K})P & -\gamma I & D_{\mathrm{cl}}^{\mathsf{T}}(\mathsf{K}) \end{bmatrix} \preceq 0$$

$$C_{\mathrm{cl}}(\mathsf{K}) & D_{\mathrm{cl}}(\mathsf{K}) & -\gamma I \end{bmatrix}$$

- \checkmark Basis for \mathcal{H}_{∞} control theory, including the convex LMI reformulation
- \triangleright Characterizes only the "strict epigraph" but not the function J(K) itself

How to Characterize the \mathcal{H}_{∞} cost?

Bounded Real Lemma

Strict version

 $J(\mathsf{K})$ is finite and strictly less than γ if and only if for some $P \succ 0$,

$$\begin{bmatrix} A_{\mathrm{cl}}^\mathsf{T}(\mathsf{K})P + PA_{\mathrm{cl}}(\mathsf{K}) & PB_{\mathrm{cl}}(\mathsf{K}) & C_{\mathrm{cl}}^\mathsf{T}(\mathsf{K}) \\ B_{\mathrm{cl}}^\mathsf{T}(\mathsf{K})P & -\gamma I & D_{\mathrm{cl}}^\mathsf{T}(\mathsf{K}) \\ C_{\mathrm{cl}}(\mathsf{K}) & D_{\mathrm{cl}}(\mathsf{K}) & -\gamma I \end{bmatrix} \prec 0 \qquad \begin{bmatrix} A_{\mathrm{cl}}^\mathsf{T}(\mathsf{K})P + PA_{\mathrm{cl}}(\mathsf{K}) & PB_{\mathrm{cl}}(\mathsf{K}) & C_{\mathrm{cl}}^\mathsf{T}(\mathsf{K}) \\ B_{\mathrm{cl}}^\mathsf{T}(\mathsf{K})P & -\gamma I & D_{\mathrm{cl}}^\mathsf{T}(\mathsf{K}) \\ C_{\mathrm{cl}}(\mathsf{K}) & D_{\mathrm{cl}}(\mathsf{K}) & -\gamma I \end{bmatrix} \preceq 0$$

Non-strict version

 $J(\mathsf{K})$ is finite and less than or equal to γ if $A_{\rm cl}(\mathsf{K})$ is stable and for some $P \succ 0$,

$$\begin{bmatrix} A_{\mathrm{cl}}^{\mathsf{T}}(\mathsf{K})P + PA_{\mathrm{cl}}(\mathsf{K}) & PB_{\mathrm{cl}}(\mathsf{K}) & C_{\mathrm{cl}}^{\mathsf{T}}(\mathsf{K}) \\ B_{\mathrm{cl}}^{\mathsf{T}}(\mathsf{K})P & -\gamma I & D_{\mathrm{cl}}^{\mathsf{T}}(\mathsf{K}) \\ C_{\mathrm{cl}}(\mathsf{K}) & D_{\mathrm{cl}}(\mathsf{K}) & -\gamma I \end{bmatrix} \preceq 0$$

- Seems "weaker" than the strict version.
- \checkmark Can be adapted to characterize the function value J(K) itself
 - \rightarrow Allows analyzing J(K) via the convex reformulation

Main Results

Can we characterize a class of stationary points that are globally optimal, despite the non-convexity and non-smoothness?

Theorem.

Any non-degenerate Clarke stationary point of J(K) is a global minimizer of J(K).

Non-degenerate Policies for \mathcal{H}_{∞} Control

Definition.

A stabilizing policy $K = (A_K, B_K, C_K, D_K)$ is called **non-degenerate**, if

There exists a non-strict certificate

 $P \succ 0$ for the closed-loop \mathcal{H}_{∞} cost

$$\begin{bmatrix} A_{\mathrm{cl}}^{\mathsf{T}}(\mathsf{K})P + PA_{\mathrm{cl}}(\mathsf{K}) & PB_{\mathrm{cl}}(\mathsf{K}) & C_{\mathrm{cl}}^{\mathsf{T}}(\mathsf{K}) \\ B_{\mathrm{cl}}^{\mathsf{T}}(\mathsf{K})P & -J(\mathsf{K})I & D_{\mathrm{cl}}^{\mathsf{T}}(\mathsf{K}) \\ C_{\mathrm{cl}}(\mathsf{K}) & D_{\mathrm{cl}}(\mathsf{K}) & -J(\mathsf{K})I \end{bmatrix} \preceq 0$$

• The block P_{12} is invertible

$$P = \begin{bmatrix} P_{11} & P_{12} \\ P_{12}^\mathsf{T} & P_{22} \end{bmatrix}$$

Needed for exploiting "convexification" of \mathcal{H}_{∞} control

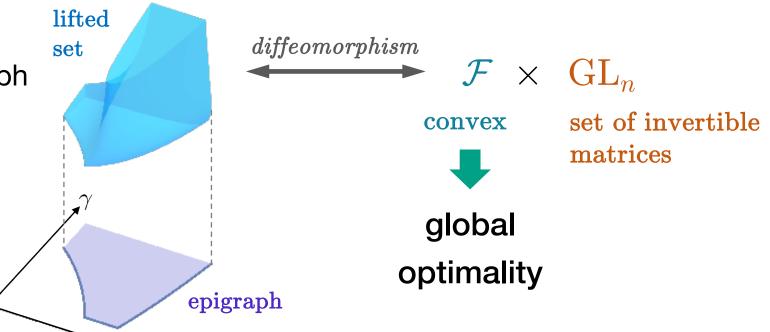
Main Results

Theorem.

Any non-degenerate Clarke stationary point of J(K) is a global minimizer of J(K).

Proof technique

- Lifting of (a subset of) epigraph by bounded real lemma
- Change of variable that "convexifies" \mathcal{H}_{∞} control
- Inspired by [Umenberger et al., 2022] [Guo & Hu, 2022]



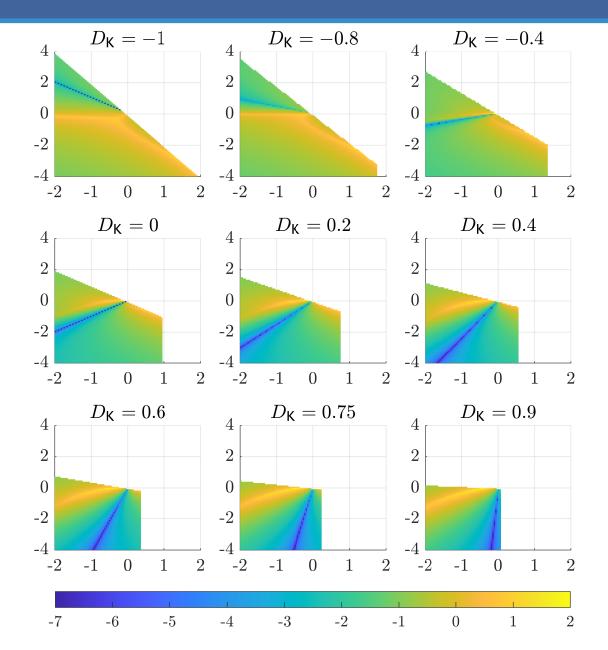
Are Non-degenerate Policies Generic?

Conjecture.

The set of degenerate stabilizing policies has measure zero.

- This is only a conjecture. We don't have a proof yet.
- We have some numerical evidence.

Are Non-degenerate Policies Generic?



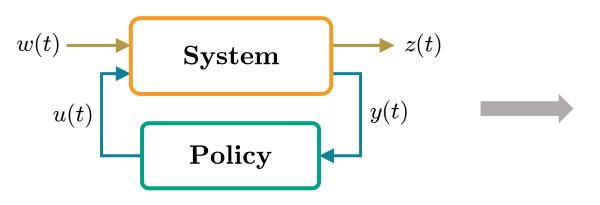
A 1-dimensional stable system

$$\dot{x}(t) = -x(t) + \begin{bmatrix} 1 & 0 \end{bmatrix} w(t) + u(t),$$

$$z(t) = \begin{bmatrix} x(t) \\ u(t) \end{bmatrix}, \quad y(t) = x(t) + \begin{bmatrix} 0 & 1 \end{bmatrix} w(t)$$

- The figure shows the value of $\ln |P_{12}|$ for a few cross sections
 - Dark blue represents possibly degenerate policies

Summary



 \mathcal{H}_{∞} policy optimization

$$\min_{\mathsf{K}} \ J(\mathsf{K})$$
s.t. $\mathsf{K} \in \mathcal{C}$

• Non-degenerate policies for \mathcal{H}_{∞} control

Theorem.

Non-degenerate stationary policies are globally optimal.

