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- Policy optimization as one of the major
workhorses of modern RL

- QObtaining theoretical guarantees can be
hard

> Nonconvex » Local search

1 Will structured control systems enjoy
good performance guarantees?
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Background & Motivation

Policy optimization for control systems

* Policy optimization has a long history
in control theory

» [Apkarian & Noll, 2006] [Saeki, 2006]
[Apkarian et al., 2008] [Gumussoy et al.,
2009] [Arzelier et al., 2011], etc.

« HIFOO, hinfstruct

Control Theory



Background & Motivation

Policy optimization for control systems

* Policy optimization has a long history
in control theory

v Very good empirical performance, even
compared to Riccati equation based
and LMI based approaches

v Better scalability, flexibility, etc.

» Weak guarantees, unpopular among
theorists

Control Theory
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Policy optimization for control systems

* Policy optimization has a long history
in control theory

1 Can we obtain stronger theoretical
guarantees for policy optimization
approaches?

Control Theory



Background & Motivation

Policy optimization for control systems

» Policy optimization as one of the major * Policy optimization has a long history
workhorses of modern RL in control theory

- QObtaining theoretical guarantees can be

hard 1 Can we obtain stronger theoretical

» Nonconvex » Local search guarantees for policy optimization

' - roaches?
) Will structured control systems enjoy approacnes

good performance guarantees?

Reinforcement Learning Control Theory



Some Recent Advances

« LQR [Fazeletal., 2018] [Malik et al., 2020] + LQG [Zheng, Tang & Li, 2021]
[Mohammad et al., 2022] [Mohammadi et al., 2021] [Zheng et al., 2022]
[Fatkhullin & Polyak, 2021], etc. [Ren et al., 2023] [Duan et al., 2023]
* Risk-sensitive mixed H,/#_. design « Kalman filtering
[Zhang et al., 2021] [Umenberger et al., 2022] [Zhang et al. 2023]
« H_ state-feedback * H_ output-feedback
[Guo & Hu, 2022] [Hu & Zheng, 2022]

Toward a Theoretical Foundation of Policy
Optimization for Learning Control Policies

Annual Review of Control, Robotics, and Autonomous Systems

Vol. 6:123-158 (Volume publication date May 2023)
https://doi.org/10.1146/annurev-control-042920-020021
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Our Focus

* Policy optimization for H_, output-feedback control

 When is a stationary point globally optimal?



H ., Output-Feedback Control

disturb regulated output [ A
isturbance | €9 & Find a feedback policy whose
w(t) —*|  Dynamical > 2(t) worst-case amplification

> System
wt)| S |v®) [
sup
control measured w0 || W]z,
input Feedback «| output
Policy Is as small as possible.
\ y
« Classical approaches:
dfif) — Ax(t) + Byw(t) + Bou(?) PP

» Riccati equations

y(t) = Cox(t) + Dyw(t) » LMI based convexification



H ., Policy Optimization

w(?) __: System —> (1) * We consider the class of linear dynamic
u(t) [ y(t) feedback policies of the form
l Policy ]4 df(t) 4 s |
Control — = kE(t) + Bry(t)  £&(t) internal state
- bl
Policy v probiem u(t) = Ck€(t) + Dxy(t)  dim&(t) = dim z(¢)
parametrization v
:  Parametrize by K = (Ay, Bk, Ck, D
me J(K) Optimization Y (A B G- D)
problem
s.t. KelC




H ., Policy Optimization

w(t)—_: System — 2(t) * Closed-loop system:
dz(t
u(t) : y(t) ”;i) = Aa(K)Z(t) + Ba(K)w(t) o 20
| Poliey z(t) = Ca(K) 2(t) + Da(K) w(?) = &(t)
Control
Polic problem
L / v  (Internally) stabilizing policies:
parametrization v
C = {K: Ay4(K) is stable}
me J(K) Optimization — set of full-order linear dynamic policies
st. Kec problem l that internally stabilize the system
A, Feasible region of the optimization problem

Domain of the objective function




H ., Policy Optimization

w(t)—_: System — 2(t) * Closed-loop system:
u(t) : y(t) d:;it) = Aa(K) #(t) + Ba(K)w(t) . [x(t)]
Policy ~ =
#) = Cq(K) 2(t) + Do (K) w(t §(t)
| Control z(t) = Ca(K) Z(t) + Da(K) w(t)
Policy v problem
oarametrization s » Objective function:
o 1K) — sup 21
i (K)  Optimization %Hw” -
problem Wi ’
s.t. KeClC = H, norm of closed-loop system




H ., Policy Optimization

w(t)—_: System [ 4% « Parametrize by K = (Ag, Bk, Ck, D)
u(t) y(t) C = set of full-order linear dynamic policies
{ Policy such that the closed-loop system is stable
Control Obiective function:
Policy V.’ problem JoETe un|(|: |ﬁ)n. » Nonconvex
parametrization v J(K) — sup 2 > Nonsmooth
. w70 Hw”[Q
me J(K) Optimization
problem g A
s.t. Ke’l Can we characterize a class of stationary
a points that are globally optimal, despite
the non-convexity and non-smoothness?
\ J




Preliminaries on Nonsmooth Analysis

* Locally Lipschitz function

Every point z has a neighborhood on which fis Lipschitz continuous

e Clarke subdifferential
flz' +tv) — f(2)

f°(z;v) = limsup A “local convexification” of f
x'—x,t]0 t
of(x) ={g: f°(x,v) > (g,v), Vv} Subdifferential of the “local convexification”

[ Lemma. If x is a local minimum of f, then 0 € 0 f(:v)]

Clarke stationary pointj




How to Characterize the #_ cost?

Bounded Real Lemma

« Strict version * Non-strict version
J(K) is finite and strictly less than ~ J(K) is finite and less than or equal to ~
if and only if for some P > 0, if Aq(K) is stable and for some P > 0,
(AT(K)P+PAy(K) PBy(K) CI(K)] ATL(K)P+PAy(K) PBa(K) CI(K)]
Bl(K)P —~I  DJ(K)| <0 Bl(K)P —I  Di(K)| =0
Ca(K) D (K) —1 i i Ca(K) Da(K) —1 i

v P > 0 certificates upper bound v on H_, cost

o Strict certificate o Non-strict certificate



How to Characterize the #_ cost?

Bounded Real Lemma

« Strict version

J(K) is finite and strictly less than ~
if and only if for some P > 0,

AT(K)YP+PA4(K) PBy(K) CI(K)
Bl(K)P —I  DI(K)| <0
Ca(K) Da(K)  —~T |

v Basis for H_, control theory, including the convex LMI reformulation

» Characterizes only the “strict epigraph” but not the function J(K) itself



How to Characterize the #_ cost?

Bounded Real Lemma

 Non-strict version

J(K) is finite and less than or equal to ~
if Aq(K) is stable and for some P > 0,

ATL(K)P+PAy(K) PBa(K) CI(K)]
Bl(K)P —I  DIK)| <0
Ca(K) Da(K)  —~T |

» Seems “weaker” than the strict version

v Can be adapted to characterize the function value J(K) itself

-~ Allows analyzing J(K) via the convex reformulation



Main Results

4 )

Can we characterize a class of stationary
points that are globally optimal, despite

the non-convexity and non-smoothness?
\ J

Theorem.

Any non-degenerate Clarke stationary point of J(K) is a
global minimizer of J(K).




Non-degenerate Policies for 7{_ Control

Definition.

A stabilizing policy K = (A, Bk, Ck, Dy) is called non-degenerate, if

* There exists a non-strict certificate * The block P, is invertible
P = 0 for the closed-loop H_, cost - .
p_ Pi1 Py
AY(K)P + PA4(K) PBa(K) CJ(K) | Py P
Bl (K)P —J(K)I DT(K) =0
Co(K) Da(K) —J(K)I Needed for exploiting

“convexification” of H__ control



Main Results

é Y

Theorem.

Any non-degenerate Clarke stationary point of J(K) is a
global minimizer of J(K).

Proof technique lifted
set diffeomorphism
- Lifting of (a subset of) epigraph - > F x GL,
by bounded real lemma convex set of invertible

_ | matrices
« Change of variable that ; "
“convexifies” ., control ’ global

\\/ optimality
epigraph

* Inspired by [Umenberger
et al., 2022] [Guo & Hu, 2022]




Are Non-degenerate Policies Generic?

Conjecture.

The set of degenerate stabilizing policies has measure zero.

« This is only a conjecture. We don’t have a proof yet.

* We have some numerical evidence.



Are Non-degenerate Policies Generic?

A 1-dimensional stable system

t(t) = —x(t) + [1 0]w(t) + u(t),

The figure shows the value of In |P,,|

for a few cross sections

= Dark blue represents possibly
degenerate policies




wlt) = gystem [ 2 ‘H., policy optimization
u(t) y(t) ) min J(K)
Policy ]4— st. KeC
* Non-degenerate policies for H_, control Control Optimization
r \ Theory ' ' Theory

Theorem. ‘ 1

Non-degenerate stationary policies
Reinforcement

are globally optimal.
. ) Learning




